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ABSTRACT 

In this  paper  we obta in  a generalized Hopf s t ruc tu re  on the  total  

space of cer ta in  principal  circle bundles  over a compac t  cosymplect ic  

manifold.  Using this  result  we give new examples  of compac t  general-  

ized Hopf  manifolds.  We describe these  examples  as suspens ions  wi th  

fibre a compac t  quot ient  of the  generalized Heisenberg group H(n, 1) by 

a discrete subgroup  and  we show an  explicit realization of t h e m  as com- 

pact  solvmanifolds.  

1. I n t r o d u c t i o n  a n d  pre l imina r i e s  

In this paper, we prove that  it is possible to define a generalized Hopf structure 

on the total space of certain principal circle bundles over a compact cosymplectic 

manifold. Using this result we obtain new examples of compact generalized Hopf 

manifolds. 

Next, we shall recall some definitions and results which be useful in the sequel. 

Let M be a 2n-dimensional a lmos t  H e r m i t i a n  m an i fo ld  with metric g and 

a l m o s t  c o m p l e x  s t r u c t u r e  J. Denote by X(M) the Lie algebra of C ~ vector 

fields on M. The K~ihler 2- form ~ is given by ~t(X, Y) = g(X, JY) and the Lee  

1- form w is defined by ,~(X) = (nl-~_l)5~(JX), where 5 denotes the codifferential. 
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The vector field B on M given by co(X) = g(X, B), for all X C X(M), is called 

the Lee  v e c t o r  field of M. 

Let us recall that M is said to be K~ihler if [J, J] = 0 and dft = 0; local ly  

c o n f o r m a l  K~ihler (1.c.K.) if [J, J] = 0, co is closed and dft = co A f~ ([13]). 

Let (M, J,g) be a 1.c.K. manifold with Lee 1-form co r 0 at every point. 

(M, J ,g)  is said to be a gene ra l i zed  H o p f  (g.H.)  man i fo ld  if the Lee 1- 

form co is parallel (see [14] and [15]). 

The main compact non-K/ihler examples of such manifolds are S 2~+1 x S 1, 

n _> 1, and the compact nilmanifold N(n, 1) x S 1, where S k is the k-dimensional 

unit sphere in N k+l and N(n, 1) = F(n, 1) \H(n,  1) is a compact quotient of the 

generalized Heisenberg group H(n, 1) by a discrete subgroup r(n, 1) (see [3], [10], 

[13] and [14]). 

Let N be a (2n + 1)-dimensional manifold and (~a, (, r/, h) an a lm o s t  c o n t a c t  

m e t r i c  s t r u c t u r e  on N. Then we have 

~2 = _ i  + r/| r/(~)= l, h(~X,~Y)= h (X ,Y ) -  r/(X)r/(Y), 

for X, Y ~ X(N), I being the identity transformation. T h e  f u n d a m e n t a l  2- 

f o r m  ~5 of N is defined by O(X, Y) -- h(X, ~Y), for X, Y C X(N). The almost 

contact metric structure (~a, (, r/, h) is said to be [1]: Sasak ian  if 

~ [~,~] + 2dr/| ~ = 0 and dr /=  r 

c o s y m p l e c t i c  if 

(1.1) d r /=  0, de  = 0 and [~, ~] = 0. 

We remark that  on a cosymplectic manifold (N, ~, ~, r/, h) the vector field ~ is 

parallel [1]. 

All the manifolds considered in this paper are assumed to be connected and of 

class C a .  

2. S o m e  p r inc ipa l  circle  bund l e s  over  a c o s y m p l e c t i c  man i fo ld  

In this section, we shall obtain some examples of compact g.H. manifolds. These 

examples are principal circle bundles over certain compact cosymplectic 

manifolds. 

We recall that there is a one-to-one correspondence between the equivalence 

classes of principal circle bundles over a manifold N and the cohomology group 
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H2(N,  Z). Moreover, given an integral closed 2-form (I) on N, there is a principal 

circle bundle ~: M -~ N with connection form 0 such that  (I) is the curvature 

form of 0 (see [7]), that  is, 

(2.1) dO = 7r*~. 

Now, suppose that (V, J~, g~) is a K~ihler manifold with integral K~ihler 2-form 

~ .  If S 1 is the unity circle then we consider on the product manifold N = V • S 1 

the cosymplectic structure (~, ~, ~, h) given by 

= J ~  ( p r l ) , ,  = E ,  = (pr2)*(O), 
(2.2)  h = (pr l )* (g ' )  + (pr2)*(0 O 0) 

where prl: N ~ V and pr2: N ~ S 1 are the canonical projections onto the first 

and second factor respectively, 0 is the canonical length element of S 1 and E its 

dual vector field. The fundamental 2-form �9 of N is (prl)*(fY). 

Denote by M the total space of the principal circle bundle over N corresponding 

to the 2-form 4). Then, using the results of [15], we conclude that M is a g.H. 

manifold. Notice that M = S • S 1, S being the principal circle bundle over V 

corresponding to the 2-form ~ ,  and that the canonical examples of compact g.H. 

manifolds S 2n+1 • S 1 and F(n, 1) \H(n,  1) x S 1 are particular cases of this general 

situation. In fact, in the case of the manifold S 2 n + l  X S 1 the corresponding K~ihler 

manifold V is the n-dimensional complex projective space and in the case of the 

manifold r(n, 1) \H(n,  1) • S 1, V is the 2n-dimensional real torus (see [3], [14] 

and [15]). 

Next, we shall prove a generalization of the above result. 

THEOREM 2.1: Let ( N , ~ , ~ , y , h )  be a cosymplectic manifold with integral 

fundamental 2-form (I) and let 7r: M --* N be the principal circle bundle over 

N corresponding to the integral dosed 2-form (~. Then M is a g.H. manifold. 

Proof'. Suppose that  0 is a connection form in the principal circle bundle 

7r: M ~ N with curvature form (I). 

If X is a vector field on N, we shall denote by X h the horizontal lift of X to 

M using the connection defined by the 1-form 0. 

Let a be the length element of the circle S 1 and E its dual vector field. 

We consider on M the almost Hermitian structure (J, g) given by 

(2.3) j --__ ~h _~_ 7I"*?] Q E* - 0 | ~h, g = ~*h + 0 | 0, 
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where ~h is the horizontal lift of ~ to M and E* is the infinitesimal generator of 

the action of S 1 on M corresponding to E. 

From (2.3), we deduce that 7r is a Riemannian submersion between the 

Riemannian manifolds (M, g) and (N, h). Thus, if X and Y are vector fields 

on N and [X h, yh]h is the horizontal component of the vector field IX h, yh] 
with respect to the connection defined by the 1-form 0, then (see [11]) 

(2.4) IX h, yh]~ = [X, y]h 

and the vector field [E*, X hI is vertical. Furthermore, using (2.1), we have that  

O[E*, X h] = O. This implies that 

(2.5) [E*, x h] : o. 

From (1.1), (2.1), (2.3), (2.4) and (2.5), we conclude that [J, J] -- 0. 

On the other hand, if ~ is the K~hler 2-form of M then a direct computation 

(see (2.3)) shows that ~ = ~*O+0A~*~. Therefore, by (1.1) and (2.1), we obtain 

that d~ := ~r*~ A ~. 

This proves that (M, J, g) is a 1.c.K. manifold with Lee 1-form ~ = 7r*~ and 

Lee vector field B -- (h. 

Now, since ~r is a Riemannian submersion and ~ is a parallel vector field on N, 

we deduce that (VXh B) h = 0, V being the Riemannian connection of the metric 

g and X a vector field on g (see [11]). Moreover, using (2.1), (2.3), (2.5) and the 

classical formula of the Riemannian connection (see [8], p. 160), we have that  

g(VxhB, E * ) :  g(VE.B,X h) : - d O ( x h , (  h) =O, g(VE.B,E*) =O. 

Thus, VxhB = ~TE.B = 0, i.e., the vector field B is parallel. | 

Remark 2.1: There exist examples of compact cosymplectic manifolds 

which are not topologically equivalent to the global product of a compact Kghler 

manifold with S 1 (see [2] and [9]). 

Next, using Theorem 2.1, we shall obtain some examples of compact g.H. 

manifolds. For this purpose, we consider the examples of compact cosymplec- 

tic manifolds given in [9]. These examples are suspensions with fibre the 2n- 

dimensional real torus ~,2~ = R2n/Z2,, of certain representations. 

Let N be a compact manifold and ]:  N -~ N a diffeomorphism. 
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We consider the representation ~) of Z on the group of the diffeomorphisms of 

N, Diff(N), given by 

Q ( k )  = f k ,  

for all k E Z. We define the action A of Z on the product manifold N x R by 

(2.7) A(n, (x, z)) -= (fn(x), z - n) 

for all n E Z and (x, z) E N • R. This action is free and properly discontinuous. 

Thus, the quotient space M = (N • R)/A is a compact manifold and the canonical 

projection p': N • ]~ ~ M is a covering map. Moreover, we can define a fibration 

~r of M on S 1 = R/Z  by v[(x, z)] = [z], for all (x, z) E N • R. It is clear that the 

fibers of v are diffeomorphic to N. The space M is called the s u s p e n s i o n  w i t h  

f ibre  N o f  t he  r e p r e s e n t a t i o n  Q (see [6]). 

Now, suppose that N = ~,~_n and that the diffeomorphism f is the Hermitian 

isometry gl: (T ~ ,  J, g) --~ ( 'F2n, or, g) defined by 

. . . .  . . . . .  = . . . . .  - x n ) ] ,  

for all [(xl . . . . .  x~, y~ . . . . .  yn)] ~ ~,2n, where (J, g) is the natural K/~hler structure 

on ]I ":n. Denote by Nl(n)  (respectively N2(n)) the suspension with fibre 'l[ "2~ of 

the representation Pl: Z ---* Diff($ 2'~) (respectively p~: Z ~ Diff(T2~)) given by 

pl(k) = (gl) k (respectively p2(k) = (gl)2k), for all k C Z. Then, the usual cosym- 

plectic structure (~, 4, ~, fz) on T 2'~ • R (see (2.2)) induces a cosymplectic structure 

(~21, (1, ~11, hi) (respectively (~2, ~ ,  7?2, h2)) on N1 (n) (respectively N~(n)). Thus, 

Nl(n) (respectively N2(n)) is a compact cosymplectic manifold (see [9]). Since 

the fundamental 2-form O1 (respectively ~2) of Nl(n)  (respectively N~(n)) is 

integral, we deduce that there is a principal circle bundle 7r1: Ml(n) ~ N1(n) 

(respectively 7r_~: M2(n) ~ N2(n)) corresponding to the 2-form qh (respectively 

r Moreover, using Theorem 2.1, we have that Ml(n) (respectively M2(n)) is 

a compact g.H. manifold. 

Next, suppose that {X1, . . .  ,X,~, Y1,. . . ,  Y~} is the canonical global basis of 

vector fields on T 2~ and that {or1 . . . .  , a , ,  t31,..., ~ }  is its dual basis of l-forms. 

Denote by a~ and ~ the 1-forms on ,~2n given by 

p 7r 7r 
ai = ai + cos ~ i ,  ~3~ = - sin ~ i -  
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if(x , ' . . . . .  X~, Y ~ , . . ,  } ~ } is the dual basis of vector fields of the basis of 1-forms 

{c~ . . . . .  a~,~,/3~ . . . . .  /)~}, we have on ~i "2~ the K~hler structure (J' ,  g') defined by 

n 

(2.8) ' '  g '  J Xi = -:~i, J }'i i ,  : Ogj 
j = l  

Let g]: ( ]r2,~, J',g') --* (~,2n, J',9') be the Hermitian isometry given by 

~ [ ( Z l  . . . . .  X n , Y l , ' . . , Y n ) ]  ~- [ ( - - Y l , ' ' ' , - - y n , X l  -~ Y l , ' ' ' , X n  Jr- Yn)], a n d  N ; ( r t )  

(respectively N~(n)) the suspension with fibre T 2~ of the representation 

p]: Z --* Diff(V 2n) (respectively p~: Z ~ Diff(T2~)) defined by p~l(k) = (9~)k 

(respectively p~(k) = (g~)2k), for all k C Z. We consider on ~72, • R the 

cosymplectic structure (~ ,  ~,  ~, /~)  given by 

Cfl' --- J' ~ (prl)., ~ - 1 0 fl' = cpr~(dt), 
(2.9) 

it' = c2(pr~(g ') + pr~(dt2) ), 

where c is the real number 

c = sin ~, 

prl: T 2n • ~ ~ ~s and pr2: 722~ • R ~ R are the canonical projections onto the 

first and second factor, respectively and t is the usual coordinate on ~. Then, the 

structure (~', ~', f/,/t ') induces a cosymplectic structure on N~(n) (respectively 

N~(n)) (see [9]). If ffP~ (respectively (I)~) is the fundamental 2-form of N{(n) 

(respectively N~(n)) and M~(n) (respectively M~(n)) is the total space of the 

principal circle bundle 7r~: M~ (n) 2_, N~ (n) (respectively 7r~: M~ (n) --* N~(n)) 

corresponding to the integral closed 2-form (b~ (respectively O~), then, using 

Theorem 2.1, we obtain that M~(n) (respectively M~(n)) is a compact g.H. man- 

ifold. 

Remark 2.2: If n = 1, the examples of compact cosymplectic manifolds NI(1), 

N2 (1), N~ (1) and N~ (1) are not topologically equivalent to the global product of 

a compact K~ihler manifold with S 1. Moreover, if N is a 3-dimensional compact 

fiat orientable Riemannian manifold and its first Betti number is equal to 1, then 

N is diffeomorphic to one of these cosymplectic manifolds (see [2], [9] and [16]). 

3. T h e  c o m p a c t  g.H. mani fo lds  Ml(n),  M2(n), M[(n) a n d  M~(n) 

In this section we shall give explicit realizations of the compact g.H. manifolds 

Ml(n),  M2(n), M~(n) and M~(n). 
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We shall prove that these manifolds are suspensions with fibre a compact 

quotient of the general ized Heisenberg  group  H(n, 1) by a discrete subgroup. 

We recall that H(n, 1) is the simply connected nilpotent Lie group of real 

matrices of the form 

(3.~) x = 

1 A c ) 

O I,  B 

0 0 1 

where A -- (al,.. .  ,a,~), tB = (bb. . .  ,b~) �9 R ~ and t �9 R (see [5]). 

A global system of coordinates (xl , . . . ,  x,~, Yl,. . .  ,y~,t) on H(n, 1) is defined 

by 

(3.2) x ~ ( x )  = a~, y ~ ( x )  = b~, t ( x )  = ~, 

with i �9 {1 , . . . ,n} .  

THE MANIFOLD Ml(n). We denote by F(n, 1) the subgroup of matrices of 

H(n, 1) with integer entries and by r(n, 1)\H(n, 1) the space of right cosets. 

Then, r(n, 1)\H(n, 1) is a compact nilmanifold (see [5]). Moreover, the left 

invariant 1-form on H(n, 1) 

n 

(3.3) ~ =  -dr + Z xjdyj 
j=l 

induces the 1-form 0" on F(n, 1)\H(n, 1). 

Now, we denote by ~ :  H(n, 1) --* H(n, 1) the automorphism of H(n, 1) defined 

by 

n 

i l (Xl , . . . ,xn ,  yl . . . .  ,y~,t) = ( ~ l , . . . , y ~ , - x l , . . . , - x ~ , t -  ~ x ~ y j ) ,  
j = l  

for all (Xl, . . . ,xn, yl , . . . ,yn, t)  E H(n, 1). It is easy to prove that ~ induces a 

diffeomorphism fl: F(n, 1)\H(n, 1) ~ P(n, 1)\H(n, 1). 

Let Ml(n) be the suspension with fibre F(n, 1)\H(n, 1) of the representa- 

tion 01: Z --* Diff(F(n, 1)\H(n, 1)) given by Ql(k) = (fl) k, for all k E Z. A 

direct computation shows that the fundamental group of Ml(n) ,  r l (Ml(n)) ,  is 

the semidirect product 

(3.4) ~rl(Ml(n)) = F(n, 1) xr Z, 
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where g'l: Z -~ Aut(F(n, 1)) is the homomorphism of Z on the automorphism 

group of F(n, 1), Aut(F(n, 1)), defined by r = ((~)lr(~,l)) -k for all k e Z. 

From (3.4), we deduce that the commutator subgroup of 7rl(M1 (n)) is 

[Trl(Ml(n)),7rl(Ml(n))] = {(Pl . . . .  ,Pn, ql . . . . .  q,~,r,O) e F(n, 1) x Z :  

Pi +qi E 2Z, Vi = 1 , . . . , n} .  

This implies that the first integral homology group H I ( M I ( n ) , Z )  is 
~) 

Z | Z2| . .- GZ2. 

On the other hand, the 1-form 0" is invariant under the action A of Z on 

F(n, 1) \H(n,  1) x R defined by the diffeomorphism f l  (see (2.7)). Consequently 

induces a 1-form 01 on Ml(n) .  Furthermore, if ~)1 is the fundamental 2-form 

of the cosymplectic manifold (Nl(n) ,~l ,~l ,~h,  hi) (see Section 2) then Ml(n )  

is a principal circle bundle on Nl(n)  with connection form 01 such that ~1 is 

the curvature form of 01. The projection of this bundle ~h: Ml(n)  --* Nl(n)  is 

defined by 

71"l[[(Xl,.. . ,Xn, Y l , . . . , y n ,  t)],Z] : [ [ (Xl , . . .  , x n , y l , . . . , y n ) ] , z ]  

and the action of S 1 on Ml(n) ,  r Ml (n )  x S 1 ---* Ml(n) ,  is given by 

r ( [ [ ( x l  . . . . .  x n ,  y l  . . . . .  ~n,  t ) ] ,  z ] ,  [w])  = [ [ ( x , , . . . ,  x ~ ,  y l ,  � 9  y~ ,  t - w ) ] ,  z] 

for all [ [ (xb . - . ,xn ,  y l , . . . , y n ,  t)],z] E -Ml(n) and [w] ~ S 1. 

Thus, Ml(n )  is diffeomorphic to Ml(n).  

Next, we shall show an explicit realization of the manifold Ml(n) as a compact 

solvmanifold. 

If ~ denotes the vector field on H(n,  1) defined by 

0 _ J-~YJ -2 ' Ot (3.5) ~= -~ 
j=l  j=l  

then its flow r ~ x H(n,  1) ~ H(n,  1) is given by 

r ( x l , . . . ,  xn, Yl , . . . ,  Yn, t)) = (xl eos (~z)  + yl s i n ( ~ z ) , . . . ,  

(3.6) x,~ cos (-~ z) + yn sin (-~ z) ,Yl cos ( ~ z )  - xl sin (-~ z ) , . . . , y n  cos ( ~  z) 

1 n 1 n 2 - x n  sin (~-z) , t + ~ ~ j = l  xjyj(cos 3~rz - 1) + ~ ~ j = l  (Yj - x2)sin 3~rz). 
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Thus, the diffeomorphism r H(n, 1) ~ H(n, 1) defined by 

~ ( 1 ) ( X l , . . . , X n ,  Yl . . . .  , y n ,  t)  = ~ ( 1 , ( X l , . . . , X n , Y l , . . . , y n , t ) )  

is just the map ~11. Furthermore, for all z E R, the diffeomorphism 

r H(n, 1) --~ H(n, 1) is an automorphism of H(n, 1). Consequently, the map 

induces a Lie group homomorphism of R into the automorphism group of 

H(n, 1), Aut(H(n, 1)), which we also denote by r 

Now, let H(n, t) •  be the semidirect product defined by the homomorphism 

~: R --, Aut(H(n, 1)). From (3.6), we deduce that a basis for the left invariant 

vector fields on H(n, 1) x~]~ is given by 

X i = c o s ( ~ z )  o - s i n ( ~ z )  o - x i s i n ( ~ z ) ~ t ,  

yi = sin ( ~ z )  o 

for all i E {1, . . . ,n} .  Then, for all i e {1, . . . ,n} ,  

T = ~ ,  

Z= ~z, 

3r E 3r X (3.7) [X~ ,~ ]=T ,  [ X ~ , Z ] = ~ - ~ ,  [ ~ , Z ] = - y  ~, 

and the other brackets being zero. Using (3.7), we conclude that H(n, 1) • 

is a (2n + 2)-dimensional simply connected solvable non-nilpotent Lie group. 

On the other hand, since r : ~ l ( k )  for all k C Z, we obtain that the 

fundamental group 7rl(M:(n)) of M:(n) is a discrete subgroup of H(n, 1) • 

Finally, it is easy to prove that the compact solvmanifold 

7h(Ml(n)) \  (H(n, 1) • is diffeomorphic to the suspension MI(n).  

Remark 3.1: 1. Let (~, ~, ~', h) be the canonical Sasakian structure on H(n, 1) 

(see [4], Theorem 6.2). Then, the vector field ~" given in (3.5) is an infinitesimal 

automorphism of the structure (~,~,~,h), that is, s  = 0, Z ~ =  0, Z ~  = 0 

and s  = 0, s being the Lie derivative operator on H(n, 1). 

2. Since the structure (~, ~, ~, h) is regular (that is, the vector field ~is regular) 

then the space of leaves g(n, 1)/~ of the foliation on H(n, 1) defined by ~" is a 

K~hler manifold and the projection 

~: H(n, I) ~ H(n, 1)/~ 

is a submersion (for more details on regular Sasakian manifolds see, for instance, 

[1]). In fact, in this case, ~ = O/Ot, H(n, 1) / ~" is R 2'~ with the usual K~ihler 



198 J.C. MARRERO AND E. PADRON Isr. J. Math. 

structure and the map ~: : H(n, 1) -~ H(n, 1)/~is just the canonical projection 

(25'1 . . . . .  Xn,  Yl . . . .  , Yn, t) - ~  (x  1 . . . .  , X n ,  Y l  . . . .  , Y n ) .  Moreover, the vector field 

is W-projectable and its projection 

37r 0 _ J~YJ 

is an infinitesimal automorphism of the usual K/ihler structure of R 2n. For an 

extensive study of the automorphism group of a regular Sasakian manifold and 

its relation with the automorphism group of the corresponding Ks manifold, 

we refer to [12]. 

3. In [9], the vector field ~. is used in order to prove that N1 (n) is a compact 

solvmanifold. 

THE MANIFOLD M2(n). Denote by 9~: H(n, 1) ~ H(n, 1) the automorphism of 

g ( n ,  1) defined by .~ = (~)2. Then ~ induces a diffeomorphism 

fs: r(n, 1)\H(n, 1) -- r(n, 1)\H(n, 1). In fact, f2 -- (fl) s. 

Now, suppose that Ms(n)  is the suspension with fibre F(n, 1)\H(n,  1) of the 

representation Qs: Z ~ Diff(F(n, 1)\H(n,  1)) given by ~02(k) = (f2) k, for all 

k E Z. The fundamental group of Ms(n),  7rl(M2(n)), is the semidirect product 

(3.8) rl(M2(n)) = F(n, 1) xr Z, 

where r Z --~ Aut(F(n, 1)) is the homomorphism defined by Cs(k) = 

((~)lr(~,l)) -k for all k E Z. 

Prom (3.8), we deduce that the commutator subgroup of lr1(M2 (n)) is 

[ T r l ( M 2 ( n ) ) , T r l ( M 2 ( n ) ) ]  = {(Pl,..  ",P,~,ql," .,qn, r,O)�9 F(n, 1) • Z :  

(Pi, qi) E (2Z) 2, Vi = 1 , . . . ,  n} 

2n) 
and the first integral homology group HI(M2(n),  Z) is Z @ Z2~ - ' .  @Z2. 

By a similar device to that used for the manifold Ml(n),  we have that Ms(n) 
is diffeomorphic to the manifold Ms (n). ~ r thermore ,  considering the vector field 

2~ (see (3.5)) and using the fact that f2 --- (fl) ~, we obtain that Ms(n) is also a 

compact solvmanifold. 

THE MANIFOLD M~(n). Denote by r'(n, 1) the discrete subgroup of H(n, 1) 
consisting of those matrices X for which (a l , . . . , am,  b l , . . . ,bn ,  c) E (2Z) 2n+1 
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(see (3.1)). Then, the left invariant l-form on H(n, I) 

(3.9) O' = -~ d t -  xjdyj  
j=1 

induces the 1-form O' on F'(n, 1)\H(n, 1). 

On the other hand, the automorphism ]~: H(n, 1) --* H(n, 1) defined by 

? (Xl , . ' . ,Xn ,  Yl . . . .  , Y n , t )  ~-- (--Yl . . . .  , - - y n ,  X l  " } - Y l , . . . , 2 C n ' J I -  Y n ,  

n 2 2 t - E j = I ( % / )  + x jy j ) ) ,  

for all (x l , . . . ,  xn, Yl, . . . ,  Yn, t) E H(n, 1), induces a diffeomorphism 

f;: r '(n, 1)\g(n, 1) --* r '(n, 1)\g(n, 1). 

Let M'l(n) be the suspension with fibre r'(n, 1)\H(n, 1) of the representation 

0k: Z --+ Diff(F'(n, 1)\H(n, 1)) given by ok(k) = (f[)k, for all k e Z. Then we 
--] --!  

have that the fundamental group of M 1 (n), zrl (M 1 (n)), is the semidirect product 

(3.10) zrl(M',(n)) = r'(n,  1) x ~  Z, 

where r Z --+ Aut(F'(n, 1)) is the homomorphism defined by 

~ ( k )  = (()'I)lr,(n,1)) -k for all k �9 Z. 

From (3.10), we deduce that the commutator subgroup of 7h(M'l(n)) is 

[TI'l(M'l(n)) , 7rl(M'l(?2)) ] = F'(n, 1) x {0}. 

This implies that the first integral homology group H1 (M'l(n), 77,) is 77,. 

On the other hand, the 1-form 0" is invariant under the action A of Z on 

r'(n, 1)\H(n, 1) x • defined by the diffeomorphism f~ (see (2.7)). Consequently 0~ 

induces a 1-form 0 k on M'I (n). If @~ is the fundamental 2-form of the cosymplectic 

manifold(N~(n), ' ' ' ' M'1(n) isa  ~1, ~1' ~}1' hi), then principal circle bundle on NI(n) 

with connection form O~ such that O~ is the curvature form of 0~. The projection 

of this bundle 7r~: MPl(n) --, N{(n) is defined by 

lrtl[[ ( X l ,  . . . , X n ,  Y l ,  . . . , y n ,  t )  ], Z] = [ [ (X@,  . . . , Xn2 ' Y12 ' ' ' ' ' ~ ) I ' Z ]  

- - t  S I - - t  and the action of S 1 on Ml(n),  r M'I (n) x --* M l ( n  ), is given by 

r Yl,..-,yn,t)l,Z],[W]) = [[(Xl,... ,xn ,y l , . . . ,yn ,~q-  2W)],Z] 
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for all [ [ ( X l , . . .  , Xn, Y l , ' '  ", Y n ,  t)], Z] e M t  1 (n) and  [w] e S 1. 

Thus, we conclude that M~I (n) is diffeomorphic to the (2n + 2)-dimensional 

compact g.H. manifold M{(n). 
Next, we shall describe the manifold M~ (n) as a compact solvmanifold. 

Let ~ be the vector field on H(n, 1) defined by 

= sin ((Zyj + x j )  - (2xj  + y )uyj) 

(3.11) 
+ E ( g -  o 

. 
j = l  

If r R > H(n, 1) --+ H(n, 1) is the flow of ~", we have that 

r  ( x , , . . . ,  x~, Yl , . . . ,  Yn, t)) = (Xla(Z + 1) + yl(7(z),..., 

(3.12) xn~(z + 1) + yna(z),-XlO'(Z) -- y16r (Z  --  1 ) , . . . , - x n a ( z )  - y~a(z - 1), 

2 sin ~ sin(~z) ~.=l(xya(z + 1) + y2a(z - 1) + 2xjyja(z)), t - 5  

�9 7 r  �9 7 r  z 4 sm g sm(y~), for all z C ]~. where a: I~ -+ R is the map defined by a(z) = 

Thus, the diffeomorphism r H(n, 1) --~ H(n, 1) given by 

r  ,Xn,  Y l , . . .  , y n , t )  -~- r (xl . . . .  ,Xn,yl,. . .  ,yn,t)) 

is just the map (j~)-l .  Moreover, for all z E R, the diffeomorphism ~'(z) : 

H(n, 1) --~ H(n, 1) is an automorphism of H(n, 1). Consequently, the map r  

induces a Lie group homomorphism of ]~ into the group Aut(H(n,  1)) which we 

also denote by r 

Now, let H(n, 1) • be the semidirect product defined by the homomorphism 

r R --* Aut(H(n,  1)). From (3.12), we deduce that a basis for the left invariant 

vector fields is given by 

4 �9 ~ o T '  - ~  ~ o X { = a ( z  + 1) b-~z ~ -a(z)-~Ty ~ + gxi sln(yz) b- 7, = sin gb- 7, 

Y~'=a(Z)o-~-a(z-1)o~7+ 4xisin(-~(z-1)) ~ Z '=  o_ "~, Oz , 

for all i e {1 , . . . ,  n}. Then, for all i e {1 . . . .  , n}, 

(3.13) 
[X[,Y/'] = T ' ,  [X[,Z'] : ~ sin-~f-4V'3,3", - gXi),2, 

Y..' Z'] ~sin ~ ( 2 V ' -  4 xr-~ 
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and the other brackets being zero. Using (3.13), we conclude that H(n, 1) • R 

is a (2n + 2)-dimensional simply connected solvable non-nilpotent Lie group. 

On the other hand, since ~(k)lr,(n,1 ) = ~b~(k) for all k E Z, we obtain that the 

fundamental group rrl (Mr 1 (n)) of Mt l(n) is a discrete subgroup of g ( m  1) • ~, N. 

Finally, it is easy to prove that the compact solvmanifold 

~I(M'I(n)) \ (H(n,  1) • R) 

is diffeomorphic to the suspension M~I (n). 

Remark 3.2: Let (J',g') be the K~ihler structure on T 2n given by (2.8). Denote 

by (fi,  ~') the Ks structure on 11~ 2n induced by (J~, g'). Then, we can define 

a regular Sasakian structure ( ~ ' , ~ , ~ , h ' )  on H(n, 1) in such a sense that the 

corresponding K/ihler manifold H(n, 1)/~ -~ is (R 2n, f i ,~ ' )  and the projection of 

H(n, 1) onto R 2n is the canonical projection ~: H(n, 1) ~ R 2n (see Remark 3.1). 

The vector field ~ is an infinitesimal a,utomorphism of the structure (~", ~,  ~ ,  h') 

and it is ~-projectable onto the vector field 

~ - s i n ~  ( (2y j+  3 0 X j - - ( 2 x j + y j ) ~ y j  

which is an infinitesimal automorphism of the Kiihler structure (fi,  ~') of R 2n. 

In [9], the vector field ~. is used in order to prove that N~(n) is a compact 

solvmanifold. 

THE MANIFOLD M~(rt). Consider the automorphism ]~: H(n, 1) --~ H(n, 1) 

defined by y~ = (]~)2. Then, ]~ induces a diffeomorphism f~: F'(n, 1) \H(n,  1) 

--~ F'(n, 1) \H(n,  1). In fact, f~ = (f~)2. 

We denote by M~2(n) the suspension with fibre r ' (n,  1)\H(n,  1) of the repre- 

sentation 0~: Z --* Diff(F'(n, 1 ) \ g ( n ,  1)) given by 0~(k) = (f~)k, for all k E Z. 

The fundamental group of M~2(n), 7rl (M~2(n)), is the semidirect product 

(3.14) ~(M'2(n)) = r'(n, 1) •162 z,  

where g~" Z -~ Aut(F'(n, 1)) is the homomorphism defined by ~b~(k) = 

((fi~)[F,(n,1)) -k for all k e E. 

From (3.14), we deduce that the commutator subgroup of Zrl(M~2(n)) is 

- - !  - - I  

[zrl(M2(n)),Trl(M2(n)) ] = {(pl,...,pn, ql,...,qn,r,O) �9 r ' (n ,1)  x z :  
p~ -q~ �9 az, vi = 1 , . . . , n } .  
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Thus, the first integral homology group HI(-Ff'2(n), Z) is Z | Z3Q .~'). QZ3. 

As in the case of the manifold M~ (n), we have that Mt 2 (n) is diffeomorphic to 

the (2n + 2)-dimensional compact g.H. manifold M.~(n). Moreover, if we consider 

the vector field 2~ ~ (see (3.11)) on H(n,  1), since f~ = (f~)2, we obtain that M~(n) 

is also a compact solvmanifold. 

From (3.4), (3.8), (3.10) and (3.14) we deduce that the fundamental group of 

the manifolds Mi(n),  M[(n) (i = 1, 2) is not abelian. Moreover, its first Betti 

number is 1. 

On the other hand, the first Betti number of the compact nilmanifold 

F(n, 1) \H(n,  1) • S 1 is 2n + 1 (see [3]). 

Therefore, we conclude that 

THEOREM 3.1: The manifolds Ml (n ) ,M2(n) ,M~(n)  and M~(n) are (2n + 2)- 

dimensional compact g.H. solvmanifolds and they are not topologically equivalent 

to the compact g.H. manifolds S 2~+1 x S 1 and (F(n, 1)\H(n,  1)) • S 1. 

4. O t h e r  examples  of  c o m p a c t  g.H.  solvmanifolds  

Let (M, J, g) be a K~hler manifold and (N, ~, (, ~/, h) a cosymplectic manifold. 

On the product manifold M • N we consider the almost contact metric structure 

(~t, ~,, ~t  h ~) given by 

~' -- J o (prl).  4- 9~ o(pr2)., ~' = ~, ~' = (pr2)*r/, h' = (prl)* g 4- (pr2)*h, 

where prl : M x N --* M and pr2: M x N --* N are the canonical projections on the 

first and second factor respectively. Then, (M • N, ~', ~,  rl', h') is a cosymplectic 

manifold. 

Thus, if r and n are integers, 0 < r _< n, and on the 2r-dimensional real 

torus ~,2r we consider the usual Kiihler structure, then the product manifolds 

T 2~ • Ni ( n - r )  and T 2r • N [ ( n - r )  with i = 1, 2 are (2n + 1)-dimensional compact 

cosymplectic manifolds. Therefore, if Oi (respectively O~) with i = 1, 2 is the 

fundamental 2-form of the cosymplectic manifold 'll '2r • Ni (n - r) (respectively 

T 2~ • N ' (n  - r)), then, using Theorem 2.1, we have that the principal circle 

bundle Mi(n , r )  (respectively M[(n,r ) )  corresponding to the closed 2-form e& 

(respectively O~) is a (2n + 2)-dimensional compact g. H. manifold. 

The manifolds M~(n, r) and M[(n, r) with i = 1, 2 also are compact solvmani- 

folds and they can be described as suspensions with fibre a compact quotient of 

the generalized Heisenberg group H(n,  1) by a discrete subgroup. 



Vol. 101,  1997  G E N E R A L I Z E D  H O P F  A N D  C O S Y M P L E C T I C  S O L V M A N I F O L D S  203  

For example, the manifold Ml(n, r) is the suspension with fibre the manifold 

r (n ,  1) \H(n ,  1) of the representation QI: Z --* Diff(r(n, 1 ) \ g ( n ,  1)) given by 

01(k) -- (f(1,r)) k, for all k e Z, where f(1,r): r (n ,  1) \H(n,  1) --* r (n ,  1)\H(n, 1) 
is the diffeomorphism defined by 

f(1,r)[(Xl,...,Xn,Yl,...,Yn,t)] -~ [ (Xl , . . . ,xr ,  Yr+l . . . .  ,Yn, Yl,. . . ,Yr, 
n 

- - X v + I ,  �9 �9 �9 , - - X n ,  t --  E j = r + l  xjyj)], 

for all [ ( x l , . . . , x n , y l , . . . , y n ,  t)] e r (n ,  1) \H(n,  1). Using this realization of 

Ml(n,r) we can see that the first integral homology group HI(MI(n,r),Z) is 

Z 2r+1 | Z2 | . . .  �9 Z2. 

Remark 4.1: In general, the first integral homology group of Mi(n, r) (respec- 

tively, M~ (n, r)) with i = 1, 2 is the first integral homology group of 2 "2~ • Ni ( n - r )  

(respectively "22~ x N~(n - r)). Thus, the first Betti number of M~(n, r) and 

M~(n, r) with i = 1, 2 is equal to 2r + 1. 

Finally, in order to prove that Ml(n,  r) is a compact solvmanifold we consider 

the vector field ~" on H(n, 1): 

1 n 2 "~ 3r  f~'~n { y .  0.._0_ --  X" 0-'~-) -[- 2 E j = r + l ( Y j  --  Xj)'~}2 0 
2 t A . ~ j - ~ r T l k  3 0 x j  3 0 y j  

+2zr(n r o o ~ 2 --  --  E j = I ( B j  X2)  r){Ej=~(y~-~7~j xj~-~y~) + �89 - ~t}" 

Then, if ~: ~ • H(n, 1) ~ H(n, 1) is the flow of ~ we have that the diffeo- 

morphism ~(z): H(n, 1) ~ H(n, 1) is an automorphism of H(n, 1), for all z E R. 

Moreover, proceeding as in Section 3, we deduce that the semidirect product 

H(n, 1) •  R is a (2n + 2)-dimensional simply connected solvable nomnilpotent 

Lie group, that the fundamental group 7rl(Ml(n,r)) of Ml(n,r) is a discrete 

subgroup of H(n, 1) x~  ~ and that Ml(n , r )  is diffeomorphic to the compact 

solvmanifold 7h(Ml(n, r))\(g(n, 1) x~  ~). 
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