

COMPACT GENERALIZED HOPF AND COSYMPLECTIC SOLVMANIFOLDS AND THE HEISENBERG GROUP $H(n, 1)$

BY

JUAN CARLOS MARRERO AND EDITH PADRÓN

*Depto. Matemática Fundamental, Universidad de La Laguna
Tenerife, Canary Islands, Spain
e-mail: jcmarrero@ull.es, mepadron@ull.es*

ABSTRACT

In this paper we obtain a generalized Hopf structure on the total space of certain principal circle bundles over a compact cosymplectic manifold. Using this result we give new examples of compact generalized Hopf manifolds. We describe these examples as suspensions with fibre a compact quotient of the generalized Heisenberg group $H(n, 1)$ by a discrete subgroup and we show an explicit realization of them as compact solvmanifolds.

1. Introduction and preliminaries

In this paper, we prove that it is possible to define a generalized Hopf structure on the total space of certain principal circle bundles over a compact cosymplectic manifold. Using this result we obtain new examples of compact generalized Hopf manifolds.

Next, we shall recall some definitions and results which be useful in the sequel.

Let M be a $2n$ -dimensional **almost Hermitian manifold** with metric g and **almost complex structure** J . Denote by $\mathfrak{X}(M)$ the Lie algebra of C^∞ vector fields on M . The **Kähler 2-form** Ω is given by $\Omega(X, Y) = g(X, JY)$ and the **Lee 1-form** ω is defined by $\omega(X) = \frac{1}{(n-1)}\delta\Omega(JX)$, where δ denotes the codifferential.

Received February 12, 1996

The vector field B on M given by $\omega(X) = g(X, B)$, for all $X \in \mathfrak{X}(M)$, is called the **Lee vector field** of M .

Let us recall that M is said to be **Kähler** if $[J, J] = 0$ and $d\Omega = 0$; **locally conformal Kähler** (l.c.K.) if $[J, J] = 0$, ω is closed and $d\Omega = \omega \wedge \Omega$ ([13]).

Let (M, J, g) be a l.c.K. manifold with Lee 1-form $\omega \neq 0$ at every point. (M, J, g) is said to be a **generalized Hopf (g.H.) manifold** if the Lee 1-form ω is parallel (see [14] and [15]).

The main compact non-Kähler examples of such manifolds are $S^{2n+1} \times S^1$, $n \geq 1$, and the compact nilmanifold $N(n, 1) \times S^1$, where S^k is the k -dimensional unit sphere in \mathbb{R}^{k+1} and $N(n, 1) = \Gamma(n, 1) \backslash H(n, 1)$ is a compact quotient of the generalized Heisenberg group $H(n, 1)$ by a discrete subgroup $\Gamma(n, 1)$ (see [3], [10], [13] and [14]).

Let N be a $(2n + 1)$ -dimensional manifold and (φ, ξ, η, h) an **almost contact metric structure** on N . Then we have

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad h(\varphi X, \varphi Y) = h(X, Y) - \eta(X)\eta(Y),$$

for $X, Y \in \mathfrak{X}(N)$, I being the identity transformation. The **fundamental 2-form** Φ of N is defined by $\Phi(X, Y) = h(X, \varphi Y)$, for $X, Y \in \mathfrak{X}(N)$. The almost contact metric structure (φ, ξ, η, h) is said to be [1]: **Sasakian** if

$$\frac{1}{2}[\varphi, \varphi] + 2d\eta \otimes \xi = 0 \quad \text{and} \quad d\eta = \Phi;$$

cosymplectic if

$$(1.1) \quad d\eta = 0, \quad d\Phi = 0 \quad \text{and} \quad [\varphi, \varphi] = 0.$$

We remark that on a cosymplectic manifold $(N, \varphi, \xi, \eta, h)$ the vector field ξ is parallel [1].

All the manifolds considered in this paper are assumed to be connected and of class C^∞ .

2. Some principal circle bundles over a cosymplectic manifold

In this section, we shall obtain some examples of compact g.H. manifolds. These examples are principal circle bundles over certain compact cosymplectic manifolds.

We recall that there is a one-to-one correspondence between the equivalence classes of principal circle bundles over a manifold N and the cohomology group

$H^2(N, \mathbb{Z})$. Moreover, given an integral closed 2-form Φ on N , there is a principal circle bundle $\pi: M \rightarrow N$ with connection form θ such that Φ is the curvature form of θ (see [7]), that is,

$$(2.1) \quad d\theta = \pi^*\Phi.$$

Now, suppose that (V, J', g') is a Kähler manifold with integral Kähler 2-form Ω' . If S^1 is the unity circle then we consider on the product manifold $N = V \times S^1$ the cosymplectic structure (φ, ξ, η, h) given by

$$(2.2) \quad \begin{aligned} \varphi &= J \circ (pr_1)_*, \quad \xi = E, \quad \eta = (pr_2)^*(\theta), \\ h &= (pr_1)^*(g') + (pr_2)^*(\theta \otimes \theta) \end{aligned}$$

where $pr_1: N \rightarrow V$ and $pr_2: N \rightarrow S^1$ are the canonical projections onto the first and second factor respectively, θ is the canonical length element of S^1 and E its dual vector field. The fundamental 2-form Φ of N is $(pr_1)^*(\Omega')$.

Denote by M the total space of the principal circle bundle over N corresponding to the 2-form Φ . Then, using the results of [15], we conclude that M is a g.H. manifold. Notice that $M = S \times S^1$, S being the principal circle bundle over V corresponding to the 2-form Ω' , and that the canonical examples of compact g.H. manifolds $S^{2n+1} \times S^1$ and $\Gamma(n, 1) \backslash H(n, 1) \times S^1$ are particular cases of this general situation. In fact, in the case of the manifold $S^{2n+1} \times S^1$ the corresponding Kähler manifold V is the n -dimensional complex projective space and in the case of the manifold $\Gamma(n, 1) \backslash H(n, 1) \times S^1$, V is the $2n$ -dimensional real torus (see [3], [14] and [15]).

Next, we shall prove a generalization of the above result.

THEOREM 2.1: *Let $(N, \varphi, \xi, \eta, h)$ be a cosymplectic manifold with integral fundamental 2-form Φ and let $\pi: M \rightarrow N$ be the principal circle bundle over N corresponding to the integral closed 2-form Φ . Then M is a g.H. manifold.*

Proof: Suppose that θ is a connection form in the principal circle bundle $\pi: M \rightarrow N$ with curvature form Φ .

If X is a vector field on N , we shall denote by X^h the horizontal lift of X to M using the connection defined by the 1-form θ .

Let α be the length element of the circle S^1 and E its dual vector field.

We consider on M the almost Hermitian structure (J, g) given by

$$(2.3) \quad J = \varphi^h + \pi^*\eta \otimes E^* - \theta \otimes \xi^h, \quad g = \pi^*h + \theta \otimes \theta,$$

where φ^h is the horizontal lift of φ to M and E^* is the infinitesimal generator of the action of S^1 on M corresponding to E .

From (2.3), we deduce that π is a Riemannian submersion between the Riemannian manifolds (M, g) and (N, h) . Thus, if X and Y are vector fields on N and $[X^h, Y^h]^h$ is the horizontal component of the vector field $[X^h, Y^h]$ with respect to the connection defined by the 1-form θ , then (see [11])

$$(2.4) \quad [X^h, Y^h]^h = [X, Y]^h$$

and the vector field $[E^*, X^h]$ is vertical. Furthermore, using (2.1), we have that $\theta[E^*, X^h] = 0$. This implies that

$$(2.5) \quad [E^*, X^h] = 0.$$

From (1.1), (2.1), (2.3), (2.4) and (2.5), we conclude that $[J, J] = 0$.

On the other hand, if Ω is the Kähler 2-form of M then a direct computation (see (2.3)) shows that $\Omega = \pi^* \Phi + \theta \wedge \pi^* \eta$. Therefore, by (1.1) and (2.1), we obtain that $d\Omega = \pi^* \eta \wedge \Omega$.

This proves that (M, J, g) is a l.c.K. manifold with Lee 1-form $\omega = \pi^* \eta$ and Lee vector field $B = \xi^h$.

Now, since π is a Riemannian submersion and ξ is a parallel vector field on N , we deduce that $(\nabla_{X^h} B)^h = 0$, ∇ being the Riemannian connection of the metric g and X a vector field on N (see [11]). Moreover, using (2.1), (2.3), (2.5) and the classical formula of the Riemannian connection (see [8], p. 160), we have that

$$g(\nabla_{X^h} B, E^*) = g(\nabla_{E^*} B, X^h) = -d\theta(X^h, \xi^h) = 0, \quad g(\nabla_{E^*} B, E^*) = 0.$$

Thus, $\nabla_{X^h} B = \nabla_{E^*} B = 0$, i.e., the vector field B is parallel. \blacksquare

Remark 2.1: There exist examples of compact cosymplectic manifolds which are not topologically equivalent to the global product of a compact Kähler manifold with S^1 (see [2] and [9]).

Next, using Theorem 2.1, we shall obtain some examples of compact g.H. manifolds. For this purpose, we consider the examples of compact cosymplectic manifolds given in [9]. These examples are suspensions with fibre the $2n$ -dimensional real torus $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ of certain representations.

Let N be a compact manifold and $f: N \rightarrow N$ a diffeomorphism.

We consider the representation ϱ of \mathbb{Z} on the group of the diffeomorphisms of $N, \text{Diff}(N)$, given by

$$(2.6) \quad \varrho(k) = f^k,$$

for all $k \in \mathbb{Z}$. We define the action A of \mathbb{Z} on the product manifold $N \times \mathbb{R}$ by

$$(2.7) \quad A(n, (x, z)) = (f^n(x), z - n)$$

for all $n \in \mathbb{Z}$ and $(x, z) \in N \times \mathbb{R}$. This action is free and properly discontinuous. Thus, the quotient space $M = (N \times \mathbb{R})/A$ is a compact manifold and the canonical projection $p': N \times \mathbb{R} \rightarrow M$ is a covering map. Moreover, we can define a fibration τ of M on $S^1 = \mathbb{R}/\mathbb{Z}$ by $\tau[(x, z)] = [z]$, for all $(x, z) \in N \times \mathbb{R}$. It is clear that the fibers of τ are diffeomorphic to N . The space M is called the **suspension with fibre N of the representation ϱ** (see [6]).

Now, suppose that $N = \mathbb{T}^{2n}$ and that the diffeomorphism f is the Hermitian isometry $g_1: (\mathbb{T}^{2n}, J, g) \rightarrow (\mathbb{T}^{2n}, J, g)$ defined by

$$g_1[(x_1, \dots, x_n, y_1, \dots, y_n)] = [(y_1, \dots, y_n, -x_1, \dots, -x_n)],$$

for all $[(x_1, \dots, x_n, y_1, \dots, y_n)] \in \mathbb{T}^{2n}$, where (J, g) is the natural Kähler structure on \mathbb{T}^{2n} . Denote by $N_1(n)$ (respectively $N_2(n)$) the suspension with fibre \mathbb{T}^{2n} of the representation $\rho_1: \mathbb{Z} \rightarrow \text{Diff}(\mathbb{T}^{2n})$ (respectively $\rho_2: \mathbb{Z} \rightarrow \text{Diff}(\mathbb{T}^{2n})$) given by $\rho_1(k) = (g_1)^k$ (respectively $\rho_2(k) = (g_1)^{2k}$), for all $k \in \mathbb{Z}$. Then, the usual cosymplectic structure $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{h})$ on $\mathbb{T}^{2n} \times \mathbb{R}$ (see (2.2)) induces a cosymplectic structure $(\varphi_1, \xi_1, \eta_1, h_1)$ (respectively $(\varphi_2, \xi_2, \eta_2, h_2)$) on $N_1(n)$ (respectively $N_2(n)$). Thus, $N_1(n)$ (respectively $N_2(n)$) is a compact cosymplectic manifold (see [9]). Since the fundamental 2-form Φ_1 (respectively Φ_2) of $N_1(n)$ (respectively $N_2(n)$) is integral, we deduce that there is a principal circle bundle $\pi_1: M_1(n) \rightarrow N_1(n)$ (respectively $\pi_2: M_2(n) \rightarrow N_2(n)$) corresponding to the 2-form Φ_1 (respectively Φ_2). Moreover, using Theorem 2.1, we have that $M_1(n)$ (respectively $M_2(n)$) is a compact g.H. manifold.

Next, suppose that $\{X_1, \dots, X_n, Y_1, \dots, Y_n\}$ is the canonical global basis of vector fields on \mathbb{T}^{2n} and that $\{\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n\}$ is its dual basis of 1-forms. Denote by α'_i and β'_i the 1-forms on \mathbb{T}^{2n} given by

$$\alpha'_i = \alpha_i + \cos \frac{\pi}{3} \beta_i, \quad \beta'_i = -\sin \frac{\pi}{3} \beta_i.$$

If $\{X'_1, \dots, X'_n, Y'_1, \dots, Y'_n\}$ is the dual basis of vector fields of the basis of 1-forms $\{\alpha'_1, \dots, \alpha'_n, \beta'_1, \dots, \beta'_n\}$, we have on \mathbb{T}^{2n} the Kähler structure (J', g') defined by

$$(2.8) \quad J'X'_i = -Y'_i, \quad J'Y'_i = X'_i, \quad g' = \sum_{j=1}^n (\alpha'_j \otimes \alpha'_j + \beta'_j \otimes \beta'_j).$$

Let $g'_1: (\mathbb{T}^{2n}, J', g') \rightarrow (\mathbb{T}^{2n}, J', g')$ be the Hermitian isometry given by $g'_1[(x_1, \dots, x_n, y_1, \dots, y_n)] = [(-y_1, \dots, -y_n, x_1 + y_1, \dots, x_n + y_n)]$, and $N'_1(n)$ (respectively $N'_2(n)$) the suspension with fibre \mathbb{T}^{2n} of the representation $\rho'_1: \mathbb{Z} \rightarrow \text{Diff}(\mathbb{T}^{2n})$ (respectively $\rho'_2: \mathbb{Z} \rightarrow \text{Diff}(\mathbb{T}^{2n})$) defined by $\rho'_1(k) = (g'_1)^k$ (respectively $\rho'_2(k) = (g'_1)^{2k}$), for all $k \in \mathbb{Z}$. We consider on $\mathbb{T}^{2n} \times \mathbb{R}$ the cosymplectic structure $(\bar{\varphi}', \bar{\xi}', \bar{\eta}', \bar{h}')$ given by

$$(2.9) \quad \begin{aligned} \bar{\varphi}' &= J' \circ (pr_1)_*, & \bar{\xi}' &= \frac{1}{c} \frac{\partial}{\partial t}, & \bar{\eta}' &= cpr_2^*(dt), \\ \bar{h}' &= c^2(pr_1^*(g') + pr_2^*(dt^2)), \end{aligned}$$

where c is the real number

$$c = 2\sqrt{\frac{2}{3} \sin \frac{\pi}{3}},$$

$pr_1: \mathbb{T}^{2n} \times \mathbb{R} \rightarrow \mathbb{T}^{2n}$ and $pr_2: \mathbb{T}^{2n} \times \mathbb{R} \rightarrow \mathbb{R}$ are the canonical projections onto the first and second factor, respectively and t is the usual coordinate on \mathbb{R} . Then, the structure $(\bar{\varphi}', \bar{\xi}', \bar{\eta}', \bar{h}')$ induces a cosymplectic structure on $N'_1(n)$ (respectively $N'_2(n)$) (see [9]). If Φ'_1 (respectively Φ'_2) is the fundamental 2-form of $N'_1(n)$ (respectively $N'_2(n)$) and $M'_1(n)$ (respectively $M'_2(n)$) is the total space of the principal circle bundle $\pi'_1: M'_1(n) \rightarrow N'_1(n)$ (respectively $\pi'_2: M'_2(n) \rightarrow N'_2(n)$) corresponding to the integral closed 2-form Φ'_1 (respectively Φ'_2), then, using Theorem 2.1, we obtain that $M'_1(n)$ (respectively $M'_2(n)$) is a compact g.H. manifold.

Remark 2.2: If $n = 1$, the examples of compact cosymplectic manifolds $N_1(1)$, $N_2(1)$, $N'_1(1)$ and $N'_2(1)$ are not topologically equivalent to the global product of a compact Kähler manifold with S^1 . Moreover, if N is a 3-dimensional compact flat orientable Riemannian manifold and its first Betti number is equal to 1, then N is diffeomorphic to one of these cosymplectic manifolds (see [2], [9] and [16]).

3. The compact g.H. manifolds $M_1(n)$, $M_2(n)$, $M'_1(n)$ and $M'_2(n)$

In this section we shall give explicit realizations of the compact g.H. manifolds $M_1(n)$, $M_2(n)$, $M'_1(n)$ and $M'_2(n)$.

We shall prove that these manifolds are suspensions with fibre a compact quotient of the **generalized Heisenberg group** $H(n, 1)$ by a discrete subgroup.

We recall that $H(n, 1)$ is the simply connected nilpotent Lie group of real matrices of the form

$$(3.1) \quad X = \begin{pmatrix} 1 & A & c \\ 0 & I_n & B \\ 0 & 0 & 1 \end{pmatrix}$$

where $A = (a_1, \dots, a_n)$, ${}^t B = (b_1, \dots, b_n) \in \mathbb{R}^n$ and $t \in \mathbb{R}$ (see [5]).

A global system of coordinates $(x_1, \dots, x_n, y_1, \dots, y_n, t)$ on $H(n, 1)$ is defined by

$$(3.2) \quad x_i(X) = a_i, \quad y_i(X) = b_i, \quad t(X) = c,$$

with $i \in \{1, \dots, n\}$.

THE MANIFOLD $M_1(n)$. We denote by $\Gamma(n, 1)$ the subgroup of matrices of $H(n, 1)$ with integer entries and by $\Gamma(n, 1) \backslash H(n, 1)$ the space of right cosets. Then, $\Gamma(n, 1) \backslash H(n, 1)$ is a compact nilmanifold (see [5]). Moreover, the left invariant 1-form on $H(n, 1)$

$$(3.3) \quad \tilde{\theta} = -dt + \sum_{j=1}^n x_j dy_j$$

induces the 1-form $\hat{\theta}$ on $\Gamma(n, 1) \backslash H(n, 1)$.

Now, we denote by $\tilde{f}_1: H(n, 1) \rightarrow H(n, 1)$ the automorphism of $H(n, 1)$ defined by

$$\tilde{f}_1(x_1, \dots, x_n, y_1, \dots, y_n, t) = (y_1, \dots, y_n, -x_1, \dots, -x_n, t - \sum_{j=1}^n x_j y_j),$$

for all $(x_1, \dots, x_n, y_1, \dots, y_n, t) \in H(n, 1)$. It is easy to prove that \tilde{f}_1 induces a diffeomorphism $f_1: \Gamma(n, 1) \backslash H(n, 1) \rightarrow \Gamma(n, 1) \backslash H(n, 1)$.

Let $\overline{M}_1(n)$ be the suspension with fibre $\Gamma(n, 1) \backslash H(n, 1)$ of the representation $\varrho_1: \mathbb{Z} \rightarrow \text{Diff}(\Gamma(n, 1) \backslash H(n, 1))$ given by $\varrho_1(k) = (f_1)^k$, for all $k \in \mathbb{Z}$. A direct computation shows that the fundamental group of $\overline{M}_1(n)$, $\pi_1(\overline{M}_1(n))$, is the semidirect product

$$(3.4) \quad \pi_1(\overline{M}_1(n)) = \Gamma(n, 1) \times_{\varphi_1} \mathbb{Z},$$

where $\psi_1: \mathbb{Z} \rightarrow \text{Aut}(\Gamma(n, 1))$ is the homomorphism of \mathbb{Z} on the automorphism group of $\Gamma(n, 1)$, $\text{Aut}(\Gamma(n, 1))$, defined by $\psi_1(k) = ((\tilde{f}_1)|_{\Gamma(n, 1)})^{-k}$ for all $k \in \mathbb{Z}$.

From (3.4), we deduce that the commutator subgroup of $\pi_1(\overline{M}_1(n))$ is

$$[\pi_1(\overline{M}_1(n)), \pi_1(\overline{M}_1(n))] = \{(p_1, \dots, p_n, q_1, \dots, q_n, r, 0) \in \Gamma(n, 1) \times \mathbb{Z} : p_i + q_i \in 2\mathbb{Z}, \forall i = 1, \dots, n\}.$$

This implies that the first integral homology group $H_1(\overline{M}_1(n), \mathbb{Z})$ is $\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \overset{n}{\cdots} \oplus \mathbb{Z}_2$.

On the other hand, the 1-form $\hat{\theta}$ is invariant under the action A of \mathbb{Z} on $\Gamma(n, 1) \setminus H(n, 1) \times \mathbb{R}$ defined by the diffeomorphism f_1 (see (2.7)). Consequently $\hat{\theta}$ induces a 1-form θ_1 on $\overline{M}_1(n)$. Furthermore, if Φ_1 is the fundamental 2-form of the cosymplectic manifold $(N_1(n), \varphi_1, \xi_1, \eta_1, h_1)$ (see Section 2) then $\overline{M}_1(n)$ is a principal circle bundle on $N_1(n)$ with connection form θ_1 such that Φ_1 is the curvature form of θ_1 . The projection of this bundle $\pi_1: \overline{M}_1(n) \rightarrow N_1(n)$ is defined by

$$\pi_1[[[(x_1, \dots, x_n, y_1, \dots, y_n, t)], z]] = [[(x_1, \dots, x_n, y_1, \dots, y_n)], z]$$

and the action of S^1 on $\overline{M}_1(n)$, $\phi_1: \overline{M}_1(n) \times S^1 \rightarrow \overline{M}_1(n)$, is given by

$$\phi_1([[[(x_1, \dots, x_n, y_1, \dots, y_n, t)], z], [w]] = [[(x_1, \dots, x_n, y_1, \dots, y_n, t - w)], z]$$

for all $[[[(x_1, \dots, x_n, y_1, \dots, y_n, t)], z]] \in \overline{M}_1(n)$ and $[w] \in S^1$.

Thus, $\overline{M}_1(n)$ is diffeomorphic to $M_1(n)$.

Next, we shall show an explicit realization of the manifold $M_1(n)$ as a compact solvmanifold.

If $\tilde{\zeta}$ denotes the vector field on $H(n, 1)$ defined by

$$(3.5) \quad \tilde{\zeta} = \frac{3\pi}{2} \left\{ \sum_{j=1}^n \left(y_j \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial y_j} \right) + \frac{1}{2} \sum_{j=1}^n (y_j^2 - x_j^2) \frac{\partial}{\partial t} \right\}$$

then its flow $\tilde{\psi}: \mathbb{R} \times H(n, 1) \rightarrow H(n, 1)$ is given by

$$(3.6) \quad \begin{aligned} \tilde{\psi}(z, (x_1, \dots, x_n, y_1, \dots, y_n, t)) &= (x_1 \cos(\frac{3\pi}{2}z) + y_1 \sin(\frac{3\pi}{2}z), \dots, \\ &x_n \cos(\frac{3\pi}{2}z) + y_n \sin(\frac{3\pi}{2}z), y_1 \cos(\frac{3\pi}{2}z) - x_1 \sin(\frac{3\pi}{2}z), \dots, y_n \cos(\frac{3\pi}{2}z) \\ &- x_n \sin(\frac{3\pi}{2}z), t + \frac{1}{2} \sum_{j=1}^n x_j y_j (\cos 3\pi z - 1) + \frac{1}{4} \sum_{j=1}^n (y_j^2 - x_j^2) \sin 3\pi z). \end{aligned}$$

Thus, the diffeomorphism $\tilde{\psi}(1): H(n, 1) \rightarrow H(n, 1)$ defined by

$$\tilde{\psi}(1)(x_1, \dots, x_n, y_1, \dots, y_n, t) = \tilde{\psi}(1, (x_1, \dots, x_n, y_1, \dots, y_n, t))$$

is just the map \tilde{f}_1^{-1} . Furthermore, for all $z \in \mathbb{R}$, the diffeomorphism $\tilde{\psi}(z): H(n, 1) \rightarrow H(n, 1)$ is an automorphism of $H(n, 1)$. Consequently, the map $\tilde{\psi}$ induces a Lie group homomorphism of \mathbb{R} into the automorphism group of $H(n, 1)$, $\text{Aut}(H(n, 1))$, which we also denote by $\tilde{\psi}$.

Now, let $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$ be the semidirect product defined by the homomorphism $\tilde{\psi}: \mathbb{R} \rightarrow \text{Aut}(H(n, 1))$. From (3.6), we deduce that a basis for the left invariant vector fields on $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$ is given by

$$\begin{aligned} X_i &= \cos\left(\frac{3\pi}{2}z\right) \frac{\partial}{\partial x_i} - \sin\left(\frac{3\pi}{2}z\right) \frac{\partial}{\partial y_i} - x_i \sin\left(\frac{3\pi}{2}z\right) \frac{\partial}{\partial t}, & T &= \frac{\partial}{\partial t}, \\ Y_i &= \sin\left(\frac{3\pi}{2}z\right) \frac{\partial}{\partial x_i} + \cos\left(\frac{3\pi}{2}z\right) \frac{\partial}{\partial y_i} + x_i \cos\left(\frac{3\pi}{2}z\right) \frac{\partial}{\partial t}, & Z &= \frac{\partial}{\partial z}, \end{aligned}$$

for all $i \in \{1, \dots, n\}$. Then, for all $i \in \{1, \dots, n\}$,

$$(3.7) \quad [X_i, Y_i] = T, \quad [X_i, Z] = \frac{3\pi}{2}Y_i, \quad [Y_i, Z] = -\frac{3\pi}{2}X_i,$$

and the other brackets being zero. Using (3.7), we conclude that $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$ is a $(2n + 2)$ -dimensional simply connected solvable non-nilpotent Lie group.

On the other hand, since $\tilde{\psi}(k)|_{\Gamma(n, 1)} = \psi_1(k)$ for all $k \in \mathbb{Z}$, we obtain that the fundamental group $\pi_1(\overline{M}_1(n))$ of $\overline{M}_1(n)$ is a discrete subgroup of $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$.

Finally, it is easy to prove that the compact solvmanifold $\pi_1(\overline{M}_1(n)) \backslash (H(n, 1) \times_{\tilde{\psi}} \mathbb{R})$ is diffeomorphic to the suspension $\overline{M}_1(n)$.

Remark 3.1: 1. Let $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{h})$ be the canonical Sasakian structure on $H(n, 1)$ (see [4], Theorem 6.2). Then, the vector field $\tilde{\xi}$ given in (3.5) is an infinitesimal automorphism of the structure $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{h})$, that is, $\mathcal{L}_{\tilde{\xi}}\tilde{\varphi} = 0$, $\mathcal{L}_{\tilde{\xi}}\tilde{\xi} = 0$, $\mathcal{L}_{\tilde{\xi}}\tilde{\eta} = 0$ and $\mathcal{L}_{\tilde{\xi}}\tilde{h} = 0$, \mathcal{L} being the Lie derivative operator on $H(n, 1)$.

2. Since the structure $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{h})$ is regular (that is, the vector field $\tilde{\xi}$ is regular) then the space of leaves $H(n, 1)/\tilde{\xi}$ of the foliation on $H(n, 1)$ defined by $\tilde{\xi}$ is a Kähler manifold and the projection

$$\tilde{\pi}: H(n, 1) \rightarrow H(n, 1)/\tilde{\xi}$$

is a submersion (for more details on regular Sasakian manifolds see, for instance, [1]). In fact, in this case, $\tilde{\xi} = \partial/\partial t$, $H(n, 1)/\tilde{\xi}$ is \mathbb{R}^{2n} with the usual Kähler

structure and the map $\tilde{\pi}: H(n, 1) \rightarrow H(n, 1)/\tilde{\xi}$ is just the canonical projection $(x_1, \dots, x_n, y_1, \dots, y_n, t) \rightarrow (x_1, \dots, x_n, y_1, \dots, y_n)$. Moreover, the vector field $\tilde{\zeta}$ is $\tilde{\pi}$ -projectable and its projection

$$\tilde{\zeta}_* = \frac{3\pi}{2} \sum_{j=1}^n \left(y_j \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial y_j} \right)$$

is an infinitesimal automorphism of the usual Kähler structure of \mathbb{R}^{2n} . For an extensive study of the automorphism group of a regular Sasakian manifold and its relation with the automorphism group of the corresponding Kähler manifold, we refer to [12].

3. In [9], the vector field $\tilde{\zeta}_*$ is used in order to prove that $N_1(n)$ is a compact solvmanifold.

THE MANIFOLD $M_2(n)$. Denote by $\tilde{f}_2: H(n, 1) \rightarrow H(n, 1)$ the automorphism of $H(n, 1)$ defined by $\tilde{f}_2 = (\tilde{f}_1)^2$. Then \tilde{f}_2 induces a diffeomorphism $f_2: \Gamma(n, 1) \setminus H(n, 1) \rightarrow \Gamma(n, 1) \setminus H(n, 1)$. In fact, $f_2 = (f_1)^2$.

Now, suppose that $\overline{M}_2(n)$ is the suspension with fibre $\Gamma(n, 1) \setminus H(n, 1)$ of the representation $\varrho_2: \mathbb{Z} \rightarrow \text{Diff}(\Gamma(n, 1) \setminus H(n, 1))$ given by $\varrho_2(k) = (f_2)^k$, for all $k \in \mathbb{Z}$. The fundamental group of $\overline{M}_2(n)$, $\pi_1(\overline{M}_2(n))$, is the semidirect product

$$(3.8) \quad \pi_1(\overline{M}_2(n)) = \Gamma(n, 1) \times_{\psi_2} \mathbb{Z},$$

where $\psi_2: \mathbb{Z} \rightarrow \text{Aut}(\Gamma(n, 1))$ is the homomorphism defined by $\psi_2(k) = ((\tilde{f}_2)_{|\Gamma(n, 1)})^{-k}$ for all $k \in \mathbb{Z}$.

From (3.8), we deduce that the commutator subgroup of $\pi_1(\overline{M}_2(n))$ is

$$[\pi_1(\overline{M}_2(n)), \pi_1(\overline{M}_2(n))] = \{(p_1, \dots, p_n, q_1, \dots, q_n, r, 0) \in \Gamma(n, 1) \times \mathbb{Z} : (p_i, q_i) \in (2\mathbb{Z})^2, \forall i = 1, \dots, n\}$$

and the first integral homology group $H_1(\overline{M}_2(n), \mathbb{Z})$ is $\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \dots \oplus \mathbb{Z}_2$.

By a similar device to that used for the manifold $M_1(n)$, we have that $\overline{M}_2(n)$ is diffeomorphic to the manifold $M_2(n)$. Furthermore, considering the vector field $2\tilde{\zeta}$ (see (3.5)) and using the fact that $f_2 = (f_1)^2$, we obtain that $M_2(n)$ is also a compact solvmanifold.

THE MANIFOLD $M'_1(n)$. Denote by $\Gamma'(n, 1)$ the discrete subgroup of $H(n, 1)$ consisting of those matrices X for which $(a_1, \dots, a_n, b_1, \dots, b_n, c) \in (2\mathbb{Z})^{2n+1}$

(see (3.1)). Then, the left invariant 1-form on $H(n, 1)$

$$(3.9) \quad \tilde{\theta}' = \frac{1}{2} \left(dt - \sum_{j=1}^n x_j dy_j \right)$$

induces the 1-form $\tilde{\theta}'$ on $\Gamma'(n, 1) \setminus H(n, 1)$.

On the other hand, the automorphism $\tilde{f}'_1: H(n, 1) \rightarrow H(n, 1)$ defined by

$$\begin{aligned} \tilde{f}'_1(x_1, \dots, x_n, y_1, \dots, y_n, t) = & (-y_1, \dots, -y_n, x_1 + y_1, \dots, x_n + y_n, \\ & t - \sum_{j=1}^n ((y_j^2/2) + x_j y_j)), \end{aligned}$$

for all $(x_1, \dots, x_n, y_1, \dots, y_n, t) \in H(n, 1)$, induces a diffeomorphism

$$f'_1: \Gamma'(n, 1) \setminus H(n, 1) \rightarrow \Gamma'(n, 1) \setminus H(n, 1).$$

Let $\overline{M}'_1(n)$ be the suspension with fibre $\Gamma'(n, 1) \setminus H(n, 1)$ of the representation $\varrho'_1: \mathbb{Z} \rightarrow \text{Diff}(\Gamma'(n, 1) \setminus H(n, 1))$ given by $\varrho'_1(k) = (f'_1)^k$, for all $k \in \mathbb{Z}$. Then we have that the fundamental group of $\overline{M}'_1(n)$, $\pi_1(\overline{M}'_1(n))$, is the semidirect product

$$(3.10) \quad \pi_1(\overline{M}'_1(n)) = \Gamma'(n, 1) \times_{\psi'_1} \mathbb{Z},$$

where $\psi'_1: \mathbb{Z} \rightarrow \text{Aut}(\Gamma'(n, 1))$ is the homomorphism defined by

$$\psi'_1(k) = ((\tilde{f}'_1)_{|\Gamma'(n, 1)})^{-k} \quad \text{for all } k \in \mathbb{Z}.$$

From (3.10), we deduce that the commutator subgroup of $\pi_1(\overline{M}'_1(n))$ is

$$[\pi_1(\overline{M}'_1(n)), \pi_1(\overline{M}'_1(n))] = \Gamma'(n, 1) \times \{0\}.$$

This implies that the first integral homology group $H_1(\overline{M}'_1(n), \mathbb{Z})$ is \mathbb{Z} .

On the other hand, the 1-form $\tilde{\theta}'$ is invariant under the action A of \mathbb{Z} on $\Gamma'(n, 1) \setminus H(n, 1) \times \mathbb{R}$ defined by the diffeomorphism f'_1 (see (2.7)). Consequently $\tilde{\theta}'$ induces a 1-form θ'_1 on $\overline{M}'_1(n)$. If Φ'_1 is the fundamental 2-form of the cosymplectic manifold $(N'_1(n), \varphi'_1, \xi'_1, \eta'_1, h'_1)$, then $\overline{M}'_1(n)$ is a principal circle bundle on $N'_1(n)$ with connection form θ'_1 such that Φ'_1 is the curvature form of θ'_1 . The projection of this bundle $\pi'_1: \overline{M}'_1(n) \rightarrow N'_1(n)$ is defined by

$$\pi'_1[[x_1, \dots, x_n, y_1, \dots, y_n, t], z] = [[(\frac{x_1}{2}, \dots, \frac{x_n}{2}, \frac{y_1}{2}, \dots, \frac{y_n}{2})], z]$$

and the action of S^1 on $\overline{M}'_1(n)$, $\phi'_1: \overline{M}'_1(n) \times S^1 \rightarrow \overline{M}'_1(n)$, is given by

$$\phi'_1([(x_1, \dots, x_n, y_1, \dots, y_n, t)], z), [w]) = [(x_1, \dots, x_n, y_1, \dots, y_n, t + 2w)], z]$$

for all $[(x_1, \dots, x_n, y_1, \dots, y_n, t)], z] \in \overline{M}'_1(n)$ and $[w] \in S^1$.

Thus, we conclude that $\overline{M}'_1(n)$ is diffeomorphic to the $(2n + 2)$ -dimensional compact g.H. manifold $M'_1(n)$.

Next, we shall describe the manifold $M'_1(n)$ as a compact solvmanifold.

Let $\tilde{\zeta}'$ be the vector field on $H(n, 1)$ defined by

$$(3.11) \quad \begin{aligned} \tilde{\zeta}' = \frac{2\pi}{9} \sin \frac{\pi}{3} & \left\{ \sum_{j=1}^n ((2y_j + x_j) \frac{\partial}{\partial x_j} - (2x_j + y_j) \frac{\partial}{\partial y_j}) \right. \\ & \left. + \sum_{j=1}^n (y_j^2 - x_j^2) \frac{\partial}{\partial t} \right\}. \end{aligned}$$

If $\tilde{\psi}' : \mathbb{R} \times H(n, 1) \rightarrow H(n, 1)$ is the flow of $\tilde{\zeta}'$, we have that

$$(3.12) \quad \begin{aligned} \tilde{\psi}'(z, (x_1, \dots, x_n, y_1, \dots, y_n, t)) &= (x_1\sigma(z+1) + y_1\sigma(z), \dots, \\ x_n\sigma(z+1) + y_n\sigma(z), -x_1\sigma(z) - y_1\sigma(z-1), \dots, -x_n\sigma(z) - y_n\sigma(z-1), \\ t - \frac{2}{3} \sin \frac{\pi}{3} \sin(\frac{\pi}{3}z) \sum_{j=1}^n (x_j^2\sigma(z+1) + y_j^2\sigma(z-1) + 2x_jy_j\sigma(z))), \end{aligned}$$

where $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is the map defined by $\sigma(z) = \frac{4}{3} \sin \frac{\pi}{3} \sin(\frac{\pi}{3}z)$, for all $z \in \mathbb{R}$. Thus, the diffeomorphism $\tilde{\psi}'(1) : H(n, 1) \rightarrow H(n, 1)$ given by

$$\tilde{\psi}'(1)(x_1, \dots, x_n, y_1, \dots, y_n, t) = \tilde{\psi}'(1, (x_1, \dots, x_n, y_1, \dots, y_n, t))$$

is just the map $(\tilde{f}'_1)^{-1}$. Moreover, for all $z \in \mathbb{R}$, the diffeomorphism $\tilde{\psi}'(z) : H(n, 1) \rightarrow H(n, 1)$ is an automorphism of $H(n, 1)$. Consequently, the map $\tilde{\psi}'$ induces a Lie group homomorphism of \mathbb{R} into the group $\text{Aut}(H(n, 1))$ which we also denote by $\tilde{\psi}'$.

Now, let $H(n, 1) \times_{\tilde{\psi}'} \mathbb{R}$ be the semidirect product defined by the homomorphism $\tilde{\psi}' : \mathbb{R} \rightarrow \text{Aut}(H(n, 1))$. From (3.12), we deduce that a basis for the left invariant vector fields is given by

$$\begin{aligned} X'_i &= \sigma(z+1) \frac{\partial}{\partial x_i} - \sigma(z) \frac{\partial}{\partial y_i} + \frac{4}{3} x_i \sin(\frac{\pi}{3}z) \frac{\partial}{\partial t}, & T' &= -\frac{4}{3} \sin \frac{\pi}{3} \frac{\partial}{\partial t}, \\ Y'_i &= \sigma(z) \frac{\partial}{\partial x_i} - \sigma(z-1) \frac{\partial}{\partial y_i} + \frac{4}{3} x_i \sin(\frac{\pi}{3}(z-1)) \frac{\partial}{\partial t}, & Z' &= \frac{\partial}{\partial z}, \end{aligned}$$

for all $i \in \{1, \dots, n\}$. Then, for all $i \in \{1, \dots, n\}$,

$$(3.13) \quad \begin{aligned} [X'_i, Y'_i] &= T', & [X'_i, Z'] &= \frac{\pi}{3} \sin \frac{\pi}{3} (\frac{4}{3} Y'_i - \frac{2}{3} X'_i), \\ [Y'_i, Z'] &= \frac{\pi}{3} \sin \frac{\pi}{3} (\frac{2}{3} Y'_i - \frac{4}{3} X'_i), \end{aligned}$$

and the other brackets being zero. Using (3.13), we conclude that $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$ is a $(2n + 2)$ -dimensional simply connected solvable non-nilpotent Lie group.

On the other hand, since $\tilde{\psi}'(k)|_{\Gamma'(n, 1)} = \psi'_1(k)$ for all $k \in \mathbb{Z}$, we obtain that the fundamental group $\pi_1(\overline{M}'_1(n))$ of $\overline{M}'_1(n)$ is a discrete subgroup of $H(n, 1) \times_{\tilde{\psi}'} \mathbb{R}$.

Finally, it is easy to prove that the compact solvmanifold

$$\pi_1(\overline{M}'_1(n)) \backslash (H(n, 1) \times_{\tilde{\psi}'} \mathbb{R})$$

is diffeomorphic to the suspension $\overline{M}'_1(n)$.

Remark 3.2: Let (J', g') be the Kähler structure on \mathbb{T}^{2n} given by (2.8). Denote by (\tilde{J}', \tilde{g}') the Kähler structure on \mathbb{R}^{2n} induced by (J', g') . Then, we can define a regular Sasakian structure $(\tilde{\varphi}', \tilde{\xi}', \tilde{\eta}', \tilde{h}')$ on $H(n, 1)$ in such a sense that the corresponding Kähler manifold $H(n, 1)/\tilde{\xi}'$ is $(\mathbb{R}^{2n}, \tilde{J}', \tilde{g}')$ and the projection of $H(n, 1)$ onto \mathbb{R}^{2n} is the canonical projection $\tilde{\pi}: H(n, 1) \rightarrow \mathbb{R}^{2n}$ (see Remark 3.1). The vector field $\tilde{\zeta}'$ is an infinitesimal automorphism of the structure $(\tilde{\varphi}', \tilde{\xi}', \tilde{\eta}', \tilde{h}')$ and it is $\tilde{\pi}$ -projectable onto the vector field

$$\tilde{\zeta}'_* = \frac{2\pi}{9} \sin \frac{\pi}{3} \left\{ \sum_{j=1}^n ((2y_j + x_j) \frac{\partial}{\partial x_j} - (2x_j + y_j) \frac{\partial}{\partial y_j}) \right\}$$

which is an infinitesimal automorphism of the Kähler structure (\tilde{J}', \tilde{g}') of \mathbb{R}^{2n} . In [9], the vector field $\tilde{\zeta}'_*$ is used in order to prove that $N'_1(n)$ is a compact solvmanifold.

THE MANIFOLD $M'_2(n)$. Consider the automorphism $\tilde{f}'_2: H(n, 1) \rightarrow H(n, 1)$ defined by $\tilde{f}'_2 = (\tilde{f}'_1)^2$. Then, \tilde{f}'_2 induces a diffeomorphism $f'_2: \Gamma'(n, 1) \backslash H(n, 1) \rightarrow \Gamma'(n, 1) \backslash H(n, 1)$. In fact, $f'_2 = (f'_1)^2$.

We denote by $\overline{M}'_2(n)$ the suspension with fibre $\Gamma'(n, 1) \backslash H(n, 1)$ of the representation $\varrho'_2: \mathbb{Z} \rightarrow \text{Diff}(\Gamma'(n, 1) \backslash H(n, 1))$ given by $\varrho'_2(k) = (f'_2)^k$, for all $k \in \mathbb{Z}$. The fundamental group of $\overline{M}'_2(n)$, $\pi_1(\overline{M}'_2(n))$, is the semidirect product

$$(3.14) \quad \pi_1(\overline{M}'_2(n)) = \Gamma'(n, 1) \times_{\psi'_2} \mathbb{Z},$$

where $\psi'_2: \mathbb{Z} \rightarrow \text{Aut}(\Gamma'(n, 1))$ is the homomorphism defined by $\psi'_2(k) = ((\tilde{f}'_2)|_{\Gamma'(n, 1)})^{-k}$ for all $k \in \mathbb{Z}$.

From (3.14), we deduce that the commutator subgroup of $\pi_1(\overline{M}'_2(n))$ is

$$[\pi_1(\overline{M}'_2(n)), \pi_1(\overline{M}'_2(n))] = \{(p_1, \dots, p_n, q_1, \dots, q_n, r, 0) \in \Gamma'(n, 1) \times \mathbb{Z} : p_i - q_i \in 3\mathbb{Z}, \forall i = 1, \dots, n\}.$$

Thus, the first integral homology group $H_1(\overline{M}'_2(n), \mathbb{Z})$ is $\mathbb{Z} \oplus \mathbb{Z}_3 \oplus \cdots \oplus \mathbb{Z}_3$.

As in the case of the manifold $M'_1(n)$, we have that $\overline{M}'_2(n)$ is diffeomorphic to the $(2n+2)$ -dimensional compact g.H. manifold $M'_2(n)$. Moreover, if we consider the vector field $2\tilde{\zeta}'$ (see (3.11)) on $H(n, 1)$, since $f'_2 = (f'_1)^2$, we obtain that $M'_2(n)$ is also a compact solvmanifold.

From (3.4), (3.8), (3.10) and (3.14) we deduce that the fundamental group of the manifolds $M_i(n), M'_i(n)$ ($i = 1, 2$) is not abelian. Moreover, its first Betti number is 1.

On the other hand, the first Betti number of the compact nilmanifold $\Gamma(n, 1) \setminus H(n, 1) \times S^1$ is $2n+1$ (see [3]).

Therefore, we conclude that

THEOREM 3.1: *The manifolds $M_1(n), M_2(n), M'_1(n)$ and $M'_2(n)$ are $(2n+2)$ -dimensional compact g.H. solvmanifolds and they are not topologically equivalent to the compact g.H. manifolds $S^{2n+1} \times S^1$ and $(\Gamma(n, 1) \setminus H(n, 1)) \times S^1$.*

4. Other examples of compact g.H. solvmanifolds

Let (M, J, g) be a Kähler manifold and $(N, \varphi, \xi, \eta, h)$ a cosymplectic manifold. On the product manifold $M \times N$ we consider the almost contact metric structure $(\varphi', \xi', \eta', h')$ given by

$$\varphi' = J \circ (pr_1)_* + \varphi \circ (pr_2)_*, \quad \xi' = \xi, \quad \eta' = (pr_2)^* \eta, \quad h' = (pr_1)^* g + (pr_2)^* h,$$

where $pr_1: M \times N \rightarrow M$ and $pr_2: M \times N \rightarrow N$ are the canonical projections on the first and second factor respectively. Then, $(M \times N, \varphi', \xi', \eta', h')$ is a cosymplectic manifold.

Thus, if r and n are integers, $0 \leq r \leq n$, and on the $2r$ -dimensional real torus \mathbb{T}^{2r} we consider the usual Kähler structure, then the product manifolds $\mathbb{T}^{2r} \times N_i(n-r)$ and $\mathbb{T}^{2r} \times N'_i(n-r)$ with $i = 1, 2$ are $(2n+1)$ -dimensional compact cosymplectic manifolds. Therefore, if Φ_i (respectively Φ'_i) with $i = 1, 2$ is the fundamental 2-form of the cosymplectic manifold $\mathbb{T}^{2r} \times N_i(n-r)$ (respectively $\mathbb{T}^{2r} \times N'_i(n-r)$), then, using Theorem 2.1, we have that the principal circle bundle $M_i(n, r)$ (respectively $M'_i(n, r)$) corresponding to the closed 2-form Φ_i (respectively Φ'_i) is a $(2n+2)$ -dimensional compact g. H. manifold.

The manifolds $M_i(n, r)$ and $M'_i(n, r)$ with $i = 1, 2$ also are compact solvmanifolds and they can be described as suspensions with fibre a compact quotient of the generalized Heisenberg group $H(n, 1)$ by a discrete subgroup.

For example, the manifold $M_1(n, r)$ is the suspension with fibre the manifold $\Gamma(n, 1) \setminus H(n, 1)$ of the representation $\varrho_1: \mathbb{Z} \rightarrow \text{Diff}(\Gamma(n, 1) \setminus H(n, 1))$ given by $\varrho_1(k) = (f_{(1, r)})^k$, for all $k \in \mathbb{Z}$, where $f_{(1, r)}: \Gamma(n, 1) \setminus H(n, 1) \rightarrow \Gamma(n, 1) \setminus H(n, 1)$ is the diffeomorphism defined by

$$f_{(1, r)}[(x_1, \dots, x_n, y_1, \dots, y_n, t)] = [(x_1, \dots, x_r, y_{r+1}, \dots, y_n, y_1, \dots, y_r, -x_{r+1}, \dots, -x_n, t - \sum_{j=r+1}^n x_j y_j)],$$

for all $[(x_1, \dots, x_n, y_1, \dots, y_n, t)] \in \Gamma(n, 1) \setminus H(n, 1)$. Using this realization of $M_1(n, r)$ we can see that the first integral homology group $H_1(M_1(n, r), \mathbb{Z})$ is $\mathbb{Z}^{2r+1} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2^{(n-r)} \dots \oplus \mathbb{Z}_2$.

Remark 4.1: In general, the first integral homology group of $M_i(n, r)$ (respectively, $M'_i(n, r)$) with $i = 1, 2$ is the first integral homology group of $\mathbb{T}^{2r} \times N_i(n-r)$ (respectively $\mathbb{T}^{2r} \times N'_i(n-r)$). Thus, the first Betti number of $M_i(n, r)$ and $M'_i(n, r)$ with $i = 1, 2$ is equal to $2r+1$.

Finally, in order to prove that $M_1(n, r)$ is a compact solvmanifold we consider the vector field $\tilde{\zeta}$ on $H(n, 1)$:

$$\begin{aligned} \tilde{\zeta} = & \frac{3\pi}{2} \{ \sum_{j=r+1}^n (y_j \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial y_j}) + \frac{1}{2} \sum_{j=r+1}^n (y_j^2 - x_j^2) \frac{\partial}{\partial t} \} \\ & + 2\pi(n-r) \{ \sum_{j=1}^r (y_j \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial y_j}) + \frac{1}{2} \sum_{j=1}^r (y_j^2 - x_j^2) \frac{\partial}{\partial t} \}. \end{aligned}$$

Then, if $\tilde{\psi}: \mathbb{R} \times H(n, 1) \rightarrow H(n, 1)$ is the flow of $\tilde{\zeta}$ we have that the diffeomorphism $\tilde{\psi}(z): H(n, 1) \rightarrow H(n, 1)$ is an automorphism of $H(n, 1)$, for all $z \in \mathbb{R}$. Moreover, proceeding as in Section 3, we deduce that the semidirect product $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$ is a $(2n+2)$ -dimensional simply connected solvable non-nilpotent Lie group, that the fundamental group $\pi_1(M_1(n, r))$ of $M_1(n, r)$ is a discrete subgroup of $H(n, 1) \times_{\tilde{\psi}} \mathbb{R}$ and that $M_1(n, r)$ is diffeomorphic to the compact solvmanifold $\pi_1(M_1(n, r)) \setminus (H(n, 1) \times_{\tilde{\psi}} \mathbb{R})$.

References

- [1] D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture Notes in Mathematics **509**, Springer-Verlag, Berlin, 1976.
- [2] D. Chinea, M. de León and J. C. Marrero, *Topology of cosymplectic manifolds*, Journal de Mathématiques Pures et Appliquées **72** (1993), 567–591.
- [3] L. A. Cordero, M. Fernández and M. de León, *Compact locally conformal Kähler nilmanifolds*, Geometriae Dedicata **21** (1986), 187–192.

- [4] L. A. Cordero, M. Fernández and M. de León, *Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures*, Atti del Seminario Matematico e Fisico dell'Università di Modena **34** (1985–86), 43–54.
- [5] Y. Haraguchi, *Sur une généralisation des structures de contact*, Thèse, Université du Haute Alsace, Mulhouse, 1981.
- [6] G. Hector and U. Hirsch, *Introduction to the Geometry of Foliations*, Part A, *Aspects of Mathematics*, Friedr. Vieweg and Sohn, 1981.
- [7] S. Kobayashi, *Principal fibre bundles with 1-dimensional toroidal group*, Tôhoku Mathematical Journal **8** (1956), 29–45.
- [8] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. I, Interscience, New York–London, 1963.
- [9] J. C. Marrero and E. Padrón, *New examples of compact cosymplectic solvmanifolds*, preprint.
- [10] J. C. Marrero and J. Rocha, *Locally conformal Kähler submersions*, Geometriae Dedicata **52** (1994), 271–289.
- [11] O'Neill, *The fundamental equations of a submersion*, The Michigan Mathematical Journal **13** (1966), 459–469.
- [12] S. Tanno, *The automorphism groups of almost contact Riemannian manifolds*, Tôhoku Mathematical Journal **21** (1969), 21–38.
- [13] I. Vaisman, *On locally conformal almost Kähler manifolds*, Israel Journal of Mathematics **24** (1976), 338–351.
- [14] I. Vaisman, *Locally conformal Kähler manifolds with parallel Lee form*, Rendiconti di Matematica, Roma **12** (1979), 263–284.
- [15] I. Vaisman, *Generalized Hopf manifolds*, Geometriae Dedicata **13** (1982), 231–255.
- [16] J. A. Wolf, *Spaces of Constant Curvature*, 5th ed., Publish or Perish, Inc., Wilmington, Delaware, 1984.