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ABSTRACT

In this paper we obtain a generalized Hopf structure on the total
space of certain principal circle bundles over a compact cosymplectic
manifold. Using this result we give new examples of compact general-
ized Hopf manifolds. We describe these examples as suspensions with
fibre a compact quotient of the generalized Heisenberg group H(n,1) by
a discrete subgroup and we show an explicit realization of them as com-

pact solvmanifolds.

1. Introduction and preliminaries
In this paper, we prove that it is possible to define a generalized Hopf structure
on the total space of certain principal circle bundles over a compact cosymplectic
manifold. Using this result we obtain new examples of compact generalized Hopf
manifolds.
Next, we shall recall some definitions and results which be useful in the sequel.
Let M be a 2n-dimensional almost Hermitian manifold with metric g and
almost complex structure J. Denote by X(M) the Lie algebra of C* vector
fields on M. The Kahler 2-form Q is given by Q(X,Y) = ¢(X, JY) and the Lee
1-form w is defined by w(X) = (n—fﬁéfl(JX ), where § denotes the codifferential.
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The vector field B on M given by w(X) = g(X, B), for all X € X(M), is called
the Lee vector field of M.

Let us recall that M is said to be Kahler if [J,J] = 0 and dQ2 = 0; locally
conformal Kéhler (l.c.K.)if[J,J] =0, w is closed and A2 =wAQ ([13]).

Let (M, J,g) be a lL.c.K. manifold with Lee 1-form w # 0 at every point.
(M, J,g) is said to be a generalized Hopf (g.H.) manifold if the Lee 1-
form w is parallel (see [14] and [15]).

The main compact non-Kahler examples of such manifolds are $2"*! x St
n > 1, and the compact nilmanifold N(n,1) x S*, where S* is the k-dimensional
unit sphere in R¥+! and N(n,1) = I'(n,1)\H(n, 1) is a compact quotient of the
generalized Heisenberg group H(n, 1) by a discrete subgroup I'(n, 1) (see [3], [10],
[13] and [14]).

Let N be a (2n + 1)-dimensional manifold and (¢, £,7, ) an almost contact

metric structure on N. Then we have
P =-T+n®¢& nE)=1, h(pX,pY)=hXY)-n(X)n(Y),

for X,Y € X(N), I being the identity transformation. The fundamental 2-
form ® of N is defined by &(X,Y) = h(X, ¢Y), for X,Y € X(N). The almost
contact metric structure (i, £, 7, h) is said to be [1]: Sasakian if

1
Slopl+2dn©E=0 and dn=9

cosymplectic if
(1.1) dn=0, d®=0 and[p,¢]=0.

We remark that on a cosymplectic manifold (N, , €&, 7, k) the vector field € is
parallel [1].
All the manifolds considered in this paper are assumed to be connected and of

class C°.

2. Some principal circle bundles over a cosymplectic manifold

In this section, we shall obtain some examples of compact g.H. manifolds. These
examples are principal circle bundles over certain compact cosymplectic

manifolds.
We recall that there is a one-to-one correspondence between the equivalence

classes of principal circle bundles over a manifold N and the cohomology group
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H?%(N,Z). Moreover, given an integral closed 2-form ® on N, there is a principal
circle bundle m: M — N with connection form 6 such that ® is the curvature
form of 6 (see [7]), that is,

(2.1) df = = 9.

Now, suppose that (V, J’, ¢’) is a Kéhler manifold with integral Kahler 2-form
V. If S! is the unity circle then we consider on the product manifold N = V' x S!
the cosymplectic structure (g, &, n, h) given by

p=Jo(pr1)s, £€=E, n=(pra)"(9),
(2.2) h=(pr1)*(g') + (pr2)* (6 © 6)

where pr;: N — V and pro: N — S are the canonical projections onto the first
and second factor respectively, 6 is the canonical length element of S* and F its
dual vector field. The fundamental 2-form ® of N is (pry)*(Q).

Denote by M the total space of the principal circle bundle over N corresponding
to the 2-form ®. Then, using the results of [15], we conclude that M is a g.H.
manifold. Notice that M = S x S!, S being the principal circle bundle over V
corresponding to the 2-form €', and that the canonical examples of compact g.H.
manifolds 2"+ x §! and I'(n, 1)\ H(n, 1) x S* are particular cases of this general
situation. In fact, in the case of the manifold $?**1 x S! the corresponding Kahler
manifold V is the n-dimensional complex projective space and in the case of the
manifold I'(n,1)\H(n,1) x S, V is the 2n-dimensional real torus (see [3], [14]
and [15]).

Next, we shall prove a generalization of the above result.

THEOREM 2.1:  Let (N,¢,€,1,h) be a cosymplectic manifold with integral
fundamental 2-form ® and let #: M — N be the principal circle bundle over
N corresponding to the integral closed 2-form ®. Then M is a g.H. manifold.

Proof:  Suppose that 6 is a connection form in the principal circle bundle
m: M — N with curvature form ®.

If X is a vector field on N, we shall denote by X" the horizontal lift of X to
M using the connection defined by the 1-form 6.

Let o be the length element of the circle S* and E its dual vector field.

We consider on M the almost Hermitian structure (J, g) given by

(2.3) J=p"+ ' QE - 0@¢&", g=1h+000,
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where " is the horizontal lift of ¢ to M and E* is the infinitesimal generator of
the action of S! on M corresponding to E.

From (2.3), we deduce that = is a Riemannian submersion between the
Riemannian manifolds (M, g) and (N, h). Thus, if X and Y are vector fields
on N and [X" Y*]" is the horizontal component of the vector field [X", Y]
with respect to the connection defined by the 1-form 6, then (see [11])

(2.4) (X" YHr =X, Y]

and the vector field [E*, X"] is vertical. Furthermore, using (2.1), we have that
9(E™, X' = 0. This implies that

(2.5) [E*, X" = 0.

From (1.1), (2.1), (2.3), (2.4) and (2.5), we conclude that [J, J] = 0.

On the other hand, if Q is the Kahler 2-form of M then a direct computation
(see (2.3)) shows that = n*®+60A7*n. Therefore, by (1.1) and (2.1), we obtain
that dQ2 = m*n A 2.

This proves that (M, J, g) is a L.c.K. manifold with Lee 1-form w = 7*n and
Lee vector field B = ¢*.

Now, since 7 is a Riemannian submersion and £ is a parallel vector field on N,
we deduce that (V x» B)? = 0, V being the Riemannian connection of the metric
g and X a vector field on N (see [11]). Moreover, using (2.1), (2.3), (2.5) and the
classical formula of the Riemannian connection (see [8], p. 160), we have that

g(VxB,E*) = ¢(Vg.B, X" = —df(X" ") =0, ¢(Vg-B,E*)=0.

Thus, Vx» B = Vg. B =0, Le., the vector field B is parallel. ]

Remark 2.1: There exist examples of compact cosymplectic manifolds
which are not topologically equivalent to the global product of a compact Kéhler
manifold with S! (see [2] and [9]).

Next, using Theorem 2.1, we shall obtain some examples of compact g.H.
manifolds. For this purpose, we consider the examples of compact cosymplec-
tic manifolds given in [9]. These examples are suspensions with fibre the 2n-
dimensional real torus T?" = R?" /Z?" of certain representations.

Let N be a compact manifold and f: N — N a diffeomorphism.
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We consider the representation g of Z on the group of the diffeomorphisms of
N, Diff(N), given by

(2.6) olk) = f¥,

for all k € Z. We define the action A of Z on the product manifold N x R by
(2.7) A(n, (7, 2)) = (f*(2),z ~ n)

for all n € Z and (z,2) € N x R. This action is free and properly discontinuous.
Thus, the quotient space M = (N xR)/A is a compact manifold and the canonical
projection p’: N x R — M is a covering map. Moreover, we can define a fibration
7 of M on S' = R/Z by 7{(z, z)] = [2], for all (z,z) € N x R. It is clear that the
fibers of = are diffeomorphic to N. The space M is called the suspension with
fibre N of the representation ¢ (see {6]).

Now, suppose that N = T?" and that the diffeomorphism f is the Hermitian
isometry g;: (T**, J, 9) — (T*", J, ) defined by

gillzr, . ey u) = W Y — 21, =20,

for all [(Xy, ..., Tn, Y1+ - -» Yn)] € T?", where (J, g) is the natural Kahler structure
on T?". Denote by Ni(n) (respectively Ny(n)) the suspension with fibre T?" of
the representation p;: Z — Diff(T?") (respectively p,: Z — Diff(T?")) given by
p1(k) = (g1)* (respectively pa(k) = (91)*), for all k € Z. Then, the usual cosym-
plectic structure (, €, 7, h) on T2 xR (see (2.2)) induces a cosymplectic structure
(¢1,€1,m, h1) (respectively (w2, £y, 12, ha)) on Ny(n) (respectively Ny(n)). Thus,
Ni(n) (respectively Na(n)) is a compact cosymplectic manifold (see [9]). Since
the fundamental 2-form ®; (respectively ®5) of Ni(n) (respectively Nz(n)) is
integral, we deduce that there is a principal circle bundle #;: Mi(n) — Ni(n)
(respectively mg: Ma(n) — Na(n)) corresponding to the 2-form @, (respectively
;). Moreover, using Theorem 2.1, we have that M;(n) (respectively Ms(n)) is
a compact g.H. manifold.

Next, suppose that {Xi,...,X,,Y1,...,Y,} is the canonical global basis of
vector fields on T?" and that {a1,...,an,B1,...,0:} is its dual basis of 1-forms.
Denote by o} and ! the 1-forms on T?" given by

T . T
&) = a; + cos :‘3',81', B = —sin 5,6,-.
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If{X{,..., X}, Y{,..., Y} is the dual basis of vector fields of the basis of 1-forms
{o),...,a, B31,..., 3.}, we have on T?" the Kéhler structure (J',g’) defined by

(2.8) JX[ ==Y/, JY/=X], ¢=) (ajcd,+8 ap).

1
i=1

Let ¢y: (T, J',¢") — (T%*,J',¢') be the Hermitian isometry given by
9’1[(-'L'ls s Tps Y1y e ’yn)] = [(_yla ey = Yn, 1 + Y1,---,Tn + yn)]a and N{(TL)
(respectively Nj(n)) the suspension with fibre T?" of the representation
gy Z — Diff(T?") (respectively ph: Z — Diff(T?")) defined by p}(k) = (g})*
(respectively ph(k) = (g})%*), for all k € Z. We consider on T?" x R the
cosymplectic structure (¢, £, 7', k') given by

@' = Je (pri)s, &=1% ' = cpr3(dt),

W = cX(pri(g’) + pr3(dt?)),

where ¢ is the real number
5 2 .7
= —sin —,
cTAY3S

pry: T2 x R — T?" and pry: T?" x R — R are the canonical projections onto the

(2.9)

first and second factor, respectively and ¢ is the usual coordinate on R. Then, the
structure (@', &, 7', k') induces a cosymplectic structure on Nj(n) (respectively
Ni(n)) (see [9]). If @ (respectively &%) is the fundamental 2-form of Ni(n)
(respectively Nj(n)) and M;(n) (respectively Mj(n)) is the total space of the
principal circle bundle 7}: M!(n) — Nj(n) (vespectively n5: Mj(n) — Nj(n))
corresponding to the integral closed 2-form ®} (respectively ®5), then, using
Theorem 2.1, we obtain that M[(n) (respectively Mj;(n)) is a compact g.H. man-
ifold.

Remark 2.2: If n = 1, the examples of compact cosymplectic manifolds N;(1),
N3 (1), Ni(1) and Nj(1) are not topologically equivalent to the global product of
a compact Kahler manifold with S!. Moreover, if N is a 3-dimensional compact
flat orientable Riemannian manifold and its first Betti number is equal to 1, then
N is diffeomorphic to one of these cosymplectic manifolds (see [2], [9] and [16]).

3. The compact g.H. manifolds M;(n), Ms(n), M|(n) and M;(n)

In this section we shall give explicit realizations of the compact g.H. manifolds
Mi(n), Ma(n), M{(n) and Mj(n).
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We shall prove that these manifolds are suspensions with fibre a compact
quotient of the generalized Heisenberg group H(n, 1) by a discrete subgroup.
We recall that H(n,1) is the simply connected nilpotent Lie group of real

matrices of the form

1 A ¢
(3.1) X=|0 I, B
0 0 1

where A = (ay,...,a,), ‘B = (b1,...,bn) € R* and t € R (see [5]).

A global system of coordinates (z1,...,Zn,Y1,.+-sYn,t) on H(n,1) is defined
by
(3.2) i(X)=a;, w(X)=b, tX)=¢

withi € {1,...,n}.

THE MANIFOLD Mj(n). We denote by I'(n,1) the subgroup of matrices of
H(n,1) with integer entries and by I'(n,1)\H(n,1) the space of right cosets.
Then, I'(n,1)\H(n,1) is a compact nilmanifold (see [5]). Moreover, the left
invariant 1-form on H(n,1)

(33) = —dt + Z z;dy;
ij=1
induces the 1-form 8 on I'(n, 1)\ H(n,1).
Now, we denote by f1: H (n,1) — H(n,1) the automorphism of H(n, 1) defined
by

n
fl(xlw"1In7y17*-'aynyt) = (yla""y'na_xla""_xnvt—ijyj),
j=1

for all (zy,...,Zn,Y1,---4Yn,t) € H(n,1). It is easy to prove that f~1 induces a
diffeomorphism fi: I'(n, 1)\H(n,1) » I'(n,1)\H(n,1).

Let M;(n) be the suspension with fibre I'(n,1)\H(n,1) of the representa-
tion g;: Z — Diff(T'(n,1)\H(n,1)) given by o1(k) = (f1)*, for all k € Z. A
direct computation shows that the fundamental group of M;(n), 71 (M(n)), is
the semidirect product

(3.4) Wl(—Ml(n)) = F(n, 1) Xy Z,
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where 11: Z — Aut(I'(n,1)) is the homomorphism of Z on the automorphism
group of I'(n, 1), Aut(I'(n, 1)), defined by 1(k) = ((f1)r(n,1)) " for all k € Z.
From (3.4), we deduce that the commutator subgroup of 71(M;(n)) is

[m(M1(n)), mi(M1(n)] = {(P1,.--,Pn, a1, -, Gns 7, 0) € (0, 1) X Z:
pi+q €22, Vi=1,...,n}.

This implies that the first integral homology group H;(Mi(n),Z) is
Z D Lok . ©Lo.

On the other hand, the 1-form 6 is invariant under the action A of Z on
I'(n,1)\H(n,1) x R defined by the diffeomorphism f; (see (2.7)). Consequently
8 induces a 1-form 6; on M;(n). Furthermore, if ®, is the fundamental 2-form
of the cosymplectic manifold (Ny(n), ¢1,&1,7m1,h1) (see Section 2) then M (n)
is a principal circle bundle on N;(n) with connection form 6; such that ®; is
the curvature form of #;. The projection of this bundle m: M1(n) — Ny(n) is
defined by

T[(@1y s Ty Y1y - s Uns )], 2] = [[(21, -+ s Tny U1, - -+, Un)), 2]

and the action of S! on Mi(n), ¢1: M1(n) x S! — M (n), is given by

¢1([[($1, a1 Zn, Y1, vynat)Lz]* [U)]) = [[(1‘1, ces Ty Yla e Yno b — U))], Z]

for all [[(z1,-- . Tn,Y1,- -+, Un,t)], 2] € M1(n) and [w] € S*.

Thus, M (n) is diffeomorphic to M;(n).

Next, we shall show an explicit realization of the manifold M;(n) as a compact
solvmanifold.

If Z denotes the vector field on H(n,1) defined by

(3.5) 4 i(y] ai % By ) Z(ya‘”” 8t

=1

H

then its flow %: R X H(n,1) — H(n,1) is given by
¥z, (15, Ty Y1y -, Yo 1)) = (1 c08(32) + y1sin(3L2), ...,
(3.6) n cos (3 2) + ynsin (3£2) ,y1 cos (32) — z1sin (£ 2),. ,yncos(S.; z)

~Znsin (3z),t+ 1 3 251 Tiy;(cos3mz — 1) + ¢ ZJ 1 (2 — 22)sin3rz).
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Thus, the diffeomorphism {j)'(l): H(n,1) — H(n,1) defined by

w(l)(xla ey Tny Yty 'ay'nat) = 1/)(1» (xla ey Ty Y1,y .. 'aynat))

is just the map ]71’1. Furthermore, for all z € R, the diffeomorphism
¥(2): H(n, 1) — H(n,1) is an automorphism of H(n,1). Consequently, the map
1[ induces a Lie group homomorphism of R into the automorphism group of
H(n,1), Aut(H(n, 1)), which we also denote by V.

Now, let H(n, 1) x g]R be the semidirect product defined by the homomorphism
#: R — Aut(H(n,1)). From (3.6), we deduce that a basis for the left invariant
vector fields on H(n,1) x s R is given by

Xi=cos (32 )g—z—sm(%z) 6‘3 —zsin(2) 2, T=2,
Y; = sin (32) 22 +cos(327r ) -+ z; cos (322, Z=2£,
for all : € {1,...,n}. Then, for all ¢ € {1,...,n},
(57 XoYI=T, X2l= 0% W2)=-TX

and the other brackets being zero. Using (3.7), we conclude that H(n,1) x R
is a (2n + 2)-dimensional simply connected solvable non-nilpotent Lie group.
On the other hand, since J(k)mn,l) = 11 (k) for all k € Z, we obtain that the
fundamental group 7 (M(n)) of M(n) is a discrete subgroup of H(n,1) x ;R
Finally, it is easy to prove that the compact solvmanifold
T (M1(n))\ (H(n,1) x ,;R) is diffeomorphic to the suspension M (n).

Remark 3.1: 1. Let (3,£,7,h) be the canonical Sasakian structure on H(n,1)
(see [4], Theorem 6.2). Then, the vector field ¢ given in (3.5) is an infinitesimal
automorphism of the structure ((ﬁ,g,ﬁ, g), that is, 2;245 =0, SEE =0, )3217 =0
and EEh =0, £ being the Lie derivative operator on H(n,1).

2. Since the structure (@, &, 7, ) is regular (that is, the vector field £ is regular)
then the space of leaves H(n,1) /€ of the foliation on H(n,1) defined by £ is a
Kéahler manifold and the projection

7: H(n,1) — H(n, 1)/E

is a submersion (for more details on regular Sasakian manifolds see, for instance,
[1]). In fact, in this case, £ = 9/dt, H(n,1) / £ is R?® with the usual Kahler
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structure and the map 7: : H(n,1) — H(n,1) /5~ is just the canonical projection
(Thsee oy Tny Yloev oy Ynst) = (T1se -y Ty Y1y - - - Yn ). Moreover, the vector field E
is T-projectable and its projection

S 3 0 0
G = —2—; (%55; —il‘jgy—)
is an infinitesimal automorphism of the usual Kahler structure of R?". For an
extensive study of the automorphism group of a regular Sasakian manifold and
its relation with the automorphism group of the corresponding Kéhler manifold,
we refer to [12].
3. In [9], the vector field (. is used in order to prove that N (n) is a compact

solvmanifold.

THE MANIFOLD My(n). Denote by fo: H(n,1) — H(n, 1) the automorphism of
H(n,1) defined by fo = (fi)%. Then f, induces a diffeomorphism
f2: T(n, 1)\H(n,1) - T'(n, 1)\H(n, 1). In fact, f = (f1)2

Now, suppose that M3(n) is the suspension with fibre I'(n, 1)\ H(n, 1) of the
representation gy: Z — Diff(I'(n,1)\H(n, 1)) given by g2(k) = (f2)F, for all
k € Z. The fundamental group of M3(n), m1(M2(n)), is the semidirect product

(3.8) m(Ma(n)) = T(n,1) xy, Z,

where 5: Z — Aut((n,1)) is the homomorphism defined by vq(k) =
((f2)|1‘(n,1))_k for all k € Z.
From (3.8), we deduce that the commutator subgroup of 7, (M2(n)) is

[WI(M_Q(TL))’WI(_M2("))] = {(pla oy Dnsqy o5 Gn, T, 0) € F(TL, 1) XZL:
(pi»@) € (2Z)%,Vi=1,...,n}

and the first integral homology group Hy(Ma(n),Z) is Z & Zo® ) YA

By a similar device to that used for the manifold M;(n), we have that M3(n)
is diffeomorphic to the manifold My(n). Furthermore, considering the vector field
2¢ (see (3.5)) and using the fact that fo = (f1)?, we obtain that M(n) is also a

compact solvmanifold.

THE MANIFOLD Mj(n). Denote by I'(n,1) the discrete subgroup of H(n,1)
consisting of those matrices X for which (ay,...,an,b1,...,bs,¢) € (2Z)*+1
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(see (3.1)). Then, the left invariant 1-form on H(n,1)

(39) 5’ = % (dt - ijdyj)
7=1

induces the 1-form 8’ on I"(n, 1)\H(n, 1).
On the other hand, the automorphism fi: H(n,1) — H(n,1) defined by

f{(xlv""wnvylw-"yyn»t) = (_yl')"'a—ynaml+y11-"7xn+yn7
t =31 (W3 /2) + 2j5)),
for all (z1,...,Zn,Y1,--,Yn,t) € H(n,1), induces a diffeomorphism
fi: T (n,1)\H(n,1) - T'(n,1)\H(n,1).

Let M—/l (n) be the suspension with fibre I'V(n,1)\H(n,1) of the representation
0,: Z — Diff(T"(n,1)\H(n, 1)) given by g}(k) = (f})*, for all k € Z. Then we
have that the fundamental group of —]\Tl (n), m (—Mll (n)), is the semidirect product

(3.10) (M, (n) = I'(n, 1) xy; Z,
where ¥: Z — Aut(I"(n,1)) is the homomorphism defined by
Ui(k) = (P any) ™ for all k € Z.
From (3.10), we deduce that the commutator subgroup of 7r1(7\/7'1 (n)) is
(w1 (3 (n)), ma (M ()] = T'(n,1) x {0}.

This implies that the first integral homology group H, (M’l (n),Z)is Z.

On the other hand, the 1-form @' is invariant under the action A of Z on
’(n, 1)\ H(n, 1) xR defined by the diffeomorphism f] (see (2.7)). Consequently 6’
induces a 1-form 6] on M’l (n). If @} is the fundamental 2-form of the cosymplectic
manifold (N{(n), ¢},&1, 7}, h}), then M’l (n) is a principal circle bundle on Ni(n)
with connection form 6 such that ®} is the curvature form of 6;. The projection

-/

of this bundle 7{: M;(n) — N{(n) is defined by
xr wn n
Trll[[(xla ey Iy Yty -ay'n,t)]vz] = [[('?17 ey _2_a %1', ey %—)],Z]
and the action of S* on M, (n), ¢,: M (n) x St — M)(n), is given by

O ([[(z1, -+ 2y Y1y s Uno )]s 2 [W]) = [[(@15 - - oy Ty U1y - -+ 3 Uy £+ 20)], 2]
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for all [(z1, .- Zn, Y15+ -+ Un, 1)), 2] € M (n) and [w] € S'.

Thus, we conclude that Mll (n) is diffeomorphic to the (2n + 2)-dimensional
compact g.H. manifold M{(n).

Next, we shall describe the manifold Mj(n) as a compact solvmanifold.

Let ¢’ be the vector field on H(n,1) defined by

T 7] 0
= —sin — 24, +x 2x; +
¢ 9 3 ;(( Y ])8 z; —{ i y])ay])

(3.11)

z é]
+> (- x?)&} :
=1

If ': R x H(n,1) — H(n,1) is the flow of ¢’, we have that

V(2 (T1s -, Trr YLy - - -3 Una ) = (T10(2 + 1) + y10(2), . . -,
(3.12) z,0(2 + 1) + yno(2), —z10(2) — y10(2 — 1),...,—2n0(2) — yno(z — 1),
t — 2sin I sin(§2) Z] 1(:1: o(z+1)+ yJ o(z — 1)+ 2zy;0(2)),

sin ¥ sin(5z), for all z € R

where o: R — R is the map defined by o(z) = $sin 2z
) g

Thus, the diffeomorphism J’(l): H(n,1) — H(n,1) given by

1;'(1)(121, T YL Une ) = O (L (Z1y e o Ty Y1y - ey Yo E))
is just the map (f{)“l. Moreover, for all z € R, the diffeomorphism tZ’ (2) :
H(n,1) — H(n,1) is an automorphism of H(n,1). Consequently, the map W
induces a Lie group homomorphism of R into the group Aut(H (n,1)) which we
also denote by /.

Now, let H(n,1) x5 .R be the semidirect product defined by the homomorphism
¥ R — Aut(H(n, 1)). From (3.12), we deduce that a basis for the left invariant
vector fields is given by

Xl =0(z+1)5 a(z)ay + $2;sin(32) 2, T' = —%sin

Wl
o

_ 8
Y/ =0(2) 5> a(z - 1) + irisin(3(z-1)%, 7/ =4,
for all i € {1,...,n}. Then, for all i € {1,...,n},
X, Y]]=T", [X],2']=gsing(5Y! - §X)),

(3.13)
[¥!,2') = §sin 5(3Y - §X)),
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and the other brackets being zero. Using (3.13), we conclude that H(n,1) x o R

is a (2n + 2)-dimensional simply connected solvable non-nilpotent Lie group.
On the other hand, since J’(k)‘p(n‘l) = (k) for all k € Z, we obtain that the

fundamental group wl(YVT;(n)) of Hll(n) is a discrete subgroup of H(n,1) x o R
Finally, it is easy to prove that the compact solvimanifold

m (My(m)\(H(n, 1) x 3, R)

is diffeomorphic to the suspension _Mll(n)

Remark 3.2: Let (J',g') be the Kéhler structure on T?" given by (2.8). Denote
by (J',§) the Kéhler structure on R2" induced by (J',¢’). Then, we can define
a regular Sasakian structure (&',&,7, k') on H(n,1) in such a sense that the
corresponding Kahler manifold H(n,1) /£~' is (R?*, J',§") and the projection of
H(n,1) onto R*" is the canonical projection 7: H(n,1) — R?" (see Remark 3.1).
The vector field E’ is an infinitesimal automorphism of the structure (&', E’ 7 % )

and it is T-projectable onto the vector field

n

~ 2r | T d a
- = -z E T N — (21 ) —
C* 9 Sin 3 j:1(< y] + x])a{p] ( fL'] + y])ayj

which is an infinitesimal automorphism of the Kahler structure (J',§) of R*".
In [9], the vector field ¢! is used in order to prove that N!(n) is a compact

solvmanifold.

THE MANIFOLD Mj(n). Consider the automorphism fl: H(n,1) — H(n,1)
defined by fi = (f1)2. Then, f} induces a diffeomorphism f5: I’(n, 1)\ H(n, 1)
- T'(n,1)\H(n,1). In fact, f} = (f])2.

We denote by M; (n) the suspension with fibre I''(n,1)\H(n, 1) of the repre-
sentation g): Z — Diff(I'(n, 1)\ H(n, 1)) given by gh(k) = (f3)*, for all k € Z.
The fundamental group of —M;(n), wl(ﬁg(n)), is the semidirect product

(3.14) 1 (My(n)) =T'(n,1) xy3 Z,

where 95 Z — Aut(I'(n,1)) is the homomorphism defined by ¥4(k) =
(f)r (n,1)) ~F for all k € Z.
From (3.14), we deduce that the commutator subgroup of m; (M;(n)) is

[m1(My(n)), mi(Ma(n))] = {(P1s--+Pnrd1,---1gn,7,0) € T'(n,1) X Z:
pi— ¢ €3L,Vi=1,...,n}.
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Thus, the first integral homology group H; (H;(n), Z)iSZD L . DZs.

As in the case of the manifold M/ (n), we have that M; (n) is diffeomorphic to
the (2n + 2)-dimensional compact g.H. manifold M,(n). Moreover, if we consider
the vector field 2¢ (see (3.11)) on H(n,1),since fj = (f])?, we obtain that M}(n)
is also a compact solvmanifold.

From (3.4), (3.8), (3.10) and (3.14) we deduce that the fundamental group of
the manifolds M;(n), M!(n) (i = 1,2) is not abelian. Moreover, its first Betti
number is 1.

On the other hand, the first Betti number of the compact nilmanifold
I(n, 1)\H(n,1) x S is 2n + 1 (see [3]).

Therefore, we conclude that
THEOREM 3.1: The manifolds My(n), Ma(n), Mi(n) and Mj(n) are (2n + 2)-
dimensional compact g.H. solvmanifolds and they are not topologically equivalent
to the compact g.H. manifolds $*"*! x S' and (['(n,1)\H(n,1)) x S™.

4. Other examples of compact g.H. solvmanifolds

Let (M, J,g) be a Kdhler manifold and (N, y,&,n,h) a cosymplectic manifold.
On the product manifold M x N we consider the almost contact metric structure
(¢',€'.n' k') given by

@' =Jo(pri)s +@o(pra)s, &€ =& 0 =(pr2)'n, k' =(pr)*g+(pr2)h,
where pri: M xN — M and prqo: M x N — N are the canonical projections on the
first and second factor respectively. Then, (M x N, ¢', &, n', ') is a cosymplectic
manifold.

Thus, if 7 and n are integers, 0 < r < n, and on the 2r-dimensional real
torus T?" we consider the usual Kihler structure, then the product manifolds
T?" x N;(n—r) and T?" x N/(n~r) with i = 1,2 are (2n+1)-dimensional compact
cosymplectic manifolds. Therefore, if ®; (respectively ®;) with ¢ = 1,2 is the
fundamental 2-form of the cosymplectic manifold T?" x N;(n — r) (respectively
T?" x N!(n — r)), then, using Theorem 2.1, we have that the principal circle
bundle M;(n,r) (respectively M/(n,r)) corresponding to the closed 2-form ®;
(respectively @) is a (2n + 2)-dimensional compact g. H. manifold.

The manifolds M;(n,r) and M/(n,r) with ¢ = 1,2 also are compact solvmani-
folds and they can be described as suspensions with fibre a compact quotient of
the generalized Heisenberg group H(n,1) by a discrete subgroup.
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For example, the manifold M;(n,r) is the suspension with fibre the manifold
[(n,1)\H(n,1) of the representation g;: Z — Diff(I'(n,1)\H(n, 1)) given by
o1(k) = (f(lyr))k, for all k € Z, where f(; y: T'(n,1)\H(n,1) — I'(n,1)\H(n,1)
is the diffeomorphism defined by

f(l,‘r)[(xlv ey Ty Y1,y - - »ynvt)] = [(ml» s TrsYrgdls ey Yns Y1y ooy Yrs
n
—Zpglyees —Tp,t — Zj=r+1 xjyj)]v

for all [(z1,...,Zn,¥1,--,Yn,t)] € T'(n,1)\H(n,1). Using this realization of
Mi(n,r) we can see that the first integral homology group H;(M;(n,r),Z) is
Z2r+1 @ Z'z @(n——r @ Z2.

Remark 4.1: In general, the first integral homology group of M;(n,r) (respec-
tively, M!(n,r)) with i = 1,2 is the first integral homology group of T?" x N;(n—r)
(respectively T?" x N/(n — r)). Thus, the first Betti number of M;(n,r) and
M!(n,r) with { = 1,2 is equal to 2r + 1.

Finally, in order to prove that M;(n,r) is a compact solvmanifold we consider
the vector field ¢ on H(n, 1):

= T n ] 8 n el
¢ = %{ijrﬂ(ng‘; - ijjajj) + %Zj:r-{-l(y? - x?’)a}

+2m(n ~ {1 Wiaes — Tige) + 3 i1 (U5 — 2 &

Then, if J: R x H(n,1) — H(n,1) is the flow of E we have that the diffeo-
morphism 9(z): H(n,1) — H(n,1) is an automorphism of H(n,1), for all z € R.
Moreover, proceeding as in Section 3, we deduce that the semidirect product
H(n,1) x ;Risa (2n + 2)-dimensional simply connected solvable non-nilpotent
Lie group, that the fundamental group m1(M;(n,r)) of My(n,r) is a discrete
subgroup of H(n,1) x et R and that M;(n,r) is diffeomorphic to the compact
solvmanifold my(M;(n,7))\(H(n,1) x; R).
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